論文の概要: Understanding the World to Solve Social Dilemmas Using Multi-Agent
Reinforcement Learning
- arxiv url: http://arxiv.org/abs/2305.11358v1
- Date: Fri, 19 May 2023 00:31:26 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-22 16:50:24.622449
- Title: Understanding the World to Solve Social Dilemmas Using Multi-Agent
Reinforcement Learning
- Title(参考訳): マルチエージェント強化学習を用いた社会ジレンマ解決の世界理解
- Authors: Manuel Rios, Nicanor Quijano, Luis Felipe Giraldo
- Abstract要約: マルチエージェント強化学習環境で世界モデルを学ぶ自己関心有理エージェントの行動について検討する。
シミュレーションの結果,社会的ジレンマが生じるシナリオを扱う場合,世界モデルによって支えられたエージェントのグループは,他のテストされたエージェントよりも優れていた。
- 参考スコア(独自算出の注目度): 0.7161783472741748
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Social dilemmas are situations where groups of individuals can benefit from
mutual cooperation but conflicting interests impede them from doing so. This
type of situations resembles many of humanity's most critical challenges, and
discovering mechanisms that facilitate the emergence of cooperative behaviors
is still an open problem. In this paper, we study the behavior of
self-interested rational agents that learn world models in a multi-agent
reinforcement learning (RL) setting and that coexist in environments where
social dilemmas can arise. Our simulation results show that groups of agents
endowed with world models outperform all the other tested ones when dealing
with scenarios where social dilemmas can arise. We exploit the world model
architecture to qualitatively assess the learnt dynamics and confirm that each
agent's world model is capable to encode information of the behavior of the
changing environment and the other agent's actions. This is the first work that
shows that world models facilitate the emergence of complex coordinated
behaviors that enable interacting agents to ``understand'' both environmental
and social dynamics.
- Abstract(参考訳): 社会的ジレンマ(英: social dilemma)とは、個人の集団が相互協力から利益を得ることができるが、相反する利害関係が彼らを妨げる状況である。
この種の状況は人類の最も重要な課題の多くに似ており、協調行動の出現を促進するメカニズムの発見はまだ未解決の問題である。
本稿では,多エージェント強化学習(RL)環境で世界モデルを学習し,社会的ジレンマが発生する環境において共存する自己関心有理的エージェントの行動について検討する。
シミュレーションの結果,社会的ジレンマが生じるシナリオを扱う場合,世界モデルによって支えられたエージェントのグループは,他のテストモデルよりも優れていた。
我々は,世界モデルアーキテクチャを用いて学習のダイナミクスを定性的に評価し,各エージェントの世界モデルが変化する環境と他のエージェントの行動に関する情報をエンコードできることを確認した。
これは、世界モデルが複雑な協調行動の出現を促進し、相互作用するエージェントが環境と社会のダイナミクスの両方を「理解」できることを示す最初の研究である。
関連論文リスト
- Multi-agent cooperation through learning-aware policy gradients [53.63948041506278]
利己的な個人はしばしば協力に失敗し、マルチエージェント学習の根本的な課題を提起する。
本稿では,学習型強化学習のための,偏見のない高導出性ポリシー勾配アルゴリズムを提案する。
我々は, 受刑者のジレンマから, 自己関心のある学習エージェントの間でどのように, いつ, 協力関係が生じるかの新たな説明を得た。
論文 参考訳(メタデータ) (2024-10-24T10:48:42Z) - The Dynamics of Social Conventions in LLM populations: Spontaneous Emergence, Collective Biases and Tipping Points [0.0]
シミュレーション対話を用いたLarge Language Model (LLM) エージェントの集団内におけるコンベンションのダイナミクスについて検討する。
グローバルに受け入れられる社会慣行は,LLM間の局所的な相互作用から自然に生じうることを示す。
献身的なLLMのマイノリティグループは、新しい社会慣習を確立することで社会変革を促進することができる。
論文 参考訳(メタデータ) (2024-10-11T16:16:38Z) - SocialGFs: Learning Social Gradient Fields for Multi-Agent Reinforcement Learning [58.84311336011451]
マルチエージェント強化学習のための新しい勾配に基づく状態表現を提案する。
オフラインサンプルからソーシャルグラデーションフィールド(SocialGF)を学習するために,デノジングスコアマッチングを採用している。
実際に、SocialGFをMAPPOなど、広く使われているマルチエージェント強化学習アルゴリズムに統合する。
論文 参考訳(メタデータ) (2024-05-03T04:12:19Z) - COMBO: Compositional World Models for Embodied Multi-Agent Cooperation [64.27636858152522]
分散エージェントは、世界の部分的な自我中心的な見解にのみ、協力しなくてはならない。
我々は、部分的な自我中心の観測から世界全体の状態を推定するために生成モデルを訓練する。
複数のエージェントの自然な構成可能な共同動作を分解することにより、マルチエージェント協調のための構成的世界モデルを学ぶ。
論文 参考訳(メタデータ) (2024-04-16T17:59:11Z) - Dynamics of Moral Behavior in Heterogeneous Populations of Learning Agents [3.7414804164475983]
本研究では、道徳的に異質な集団が社会的ジレンマ環境で相互作用する学習力学について研究する。
我々は、親社会と反社会的エージェント間のいくつかの非自明な相互作用を観察する。
ある種の道徳的エージェントは、より協調的な行動に向けて利己的なエージェントを操ることができる。
論文 参考訳(メタデータ) (2024-03-07T04:12:24Z) - SOTOPIA: Interactive Evaluation for Social Intelligence in Language Agents [107.4138224020773]
人工エージェントと人間との複雑な社会的相互作用をシミュレートするオープンエンド環境であるSOTOPIAを提案する。
エージェントは、複雑な社会的目標を達成するために協調し、協力し、交換し、互いに競い合う。
GPT-4は,人間よりも目標達成率が著しく低く,社会的常識的推論や戦略的コミュニケーション能力の発揮に苦慮していることがわかった。
論文 参考訳(メタデータ) (2023-10-18T02:27:01Z) - Flexible social inference facilitates targeted social learning when
rewards are not observable [58.762004496858836]
グループは、個人が他人の成功から学べるときにより効果的にコーディネートする。
社会的推論能力は、このギャップを埋める助けとなり、個人が他人の基本的な知識に対する信念を更新し、観察可能な行動軌跡から成功することを示唆する。
論文 参考訳(メタデータ) (2022-12-01T21:04:03Z) - Modelling Cooperation in Network Games with Spatio-Temporal Complexity [11.665246332943058]
複雑なグリッドワールドドメインにおける自己組織化協調の出現について検討する。
マルチエージェント深層強化学習を用いて,エージェント・ソサエティの多種多様なメカニズムをシミュレートした。
本手法は,人間および人工エージェントシステムにおける機構設計に影響を及ぼす。
論文 参考訳(メタデータ) (2021-02-13T12:04:52Z) - Emergent Reciprocity and Team Formation from Randomized Uncertain Social
Preferences [8.10414043447031]
我々は,不確実な社会的嗜好(RUSP)をランダム化した訓練エージェントの創発的相互性,間接的相互性,評価,チーム形成の証拠を示す。
RUSPは汎用的でスケーラブルであり、元のゲームダイナミクスや目的を変更することなく、任意のマルチエージェント環境に適用することができる。
特に、RUSPではこれらの行動が出現し、より複雑な時間的環境において、Iterated Prisoner's Dilemmaのような古典的な抽象的社会ジレンマの社会福祉均衡をもたらすことが示される。
論文 参考訳(メタデータ) (2020-11-10T20:06:19Z) - Emergent Social Learning via Multi-agent Reinforcement Learning [91.57176641192771]
社会学習は、人間と動物の知性の重要な構成要素である。
本稿では,独立系強化学習エージェントが,社会的学習を用いてパフォーマンスを向上させることを学べるかどうかを検討する。
論文 参考訳(メタデータ) (2020-10-01T17:54:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。