論文の概要: IndoorWorld: Integrating Physical Task Solving and Social Simulation in A Heterogeneous Multi-Agent Environment
- arxiv url: http://arxiv.org/abs/2506.12331v1
- Date: Sat, 14 Jun 2025 03:44:09 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-17 17:28:45.884254
- Title: IndoorWorld: Integrating Physical Task Solving and Social Simulation in A Heterogeneous Multi-Agent Environment
- Title(参考訳): IndoorWorld:不均一なマルチエージェント環境における物理課題解決と社会シミュレーションの統合
- Authors: Dekun Wu, Frederik Brudy, Bang Liu, Yi Wang,
- Abstract要約: IndoorWorldは、物理と社会のダイナミクスを密に統合した異質なマルチエージェント環境である。
エージェントの動作に対するマルチエージェント協調,資源競争,空間的レイアウトの影響を検討するために,オフィス環境における一連の実験を行い,その可能性を実証する。
- 参考スコア(独自算出の注目度): 24.052929297990953
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Virtual environments are essential to AI agent research. Existing environments for LLM agent research typically focus on either physical task solving or social simulation, with the former oversimplifying agent individuality and social dynamics, and the latter lacking physical grounding of social behaviors. We introduce IndoorWorld, a heterogeneous multi-agent environment that tightly integrates physical and social dynamics. By introducing novel challenges for LLM-driven agents in orchestrating social dynamics to influence physical environments and anchoring social interactions within world states, IndoorWorld opens up possibilities of LLM-based building occupant simulation for architectural design. We demonstrate the potential with a series of experiments within an office setting to examine the impact of multi-agent collaboration, resource competition, and spatial layout on agent behavior.
- Abstract(参考訳): 仮想環境はAIエージェント研究に不可欠である。
LLMエージェント研究の既存の環境は、典型的には、エージェントの個人性や社会的ダイナミクスを単純化し、社会的行動の物理的基盤を欠いた、物理的問題解決または社会シミュレーションに重点を置いている。
IndoorWorldは、物理と社会のダイナミクスを密に統合した異質なマルチエージェント環境である。
物理的環境に影響を与える社会的ダイナミクスを組織化し、世界国家内での社会的相互作用を定着させる上で、LLMを主体としたエージェントに新たな課題を導入することにより、インドアワールドは、LLMを基盤とした建物占有シミュレーションのアーキテクチャ設計の可能性を広げる。
エージェントの動作に対するマルチエージェント協調,資源競争,空間的レイアウトの影響を検討するために,オフィス環境における一連の実験を行い,その可能性を実証する。
関連論文リスト
- SocioVerse: A World Model for Social Simulation Powered by LLM Agents and A Pool of 10 Million Real-World Users [70.02370111025617]
本稿では,社会シミュレーションのためのエージェント駆動世界モデルであるSocioVerseを紹介する。
私たちのフレームワークは、4つの強力なアライメントコンポーネントと1000万の実際の個人からなるユーザプールを備えています。
SocioVerseは、多様性、信頼性、代表性を確保しつつ、大規模な人口動態を反映できることを示した。
論文 参考訳(メタデータ) (2025-04-14T12:12:52Z) - AgentSociety: Large-Scale Simulation of LLM-Driven Generative Agents Advances Understanding of Human Behaviors and Society [32.849311155921264]
本稿では,現実的な社会環境を統合した大規模社会シミュレータであるAgentSocietyを提案する。
提案したシミュレーターに基づいて,500万件のインタラクションをシミュレートし,10万件以上のエージェントの社会生活を生成する。
偏極、炎症性メッセージの普及、普遍的ベーシック・インカム・ポリシーの効果、ハリケーンなどの外部ショックの影響の4つに焦点をあてる。
論文 参考訳(メタデータ) (2025-02-12T15:27:07Z) - AdaSociety: An Adaptive Environment with Social Structures for Multi-Agent Decision-Making [45.71942183664368]
AdaSocietyは、拡張状態とアクション空間を特徴とするカスタマイズ可能なマルチエージェント環境である。
エージェントが進むにつれて、エージェントが実行する社会的構造を持つ新しいタスクを適応的に生成する。
AdaSocietyは、さまざまな物理的および社会的環境におけるインテリジェンスを探索するための、貴重な研究プラットフォームとして機能する。
論文 参考訳(メタデータ) (2024-11-06T12:19:01Z) - Synergistic Simulations: Multi-Agent Problem Solving with Large Language Models [36.571597246832326]
大規模言語モデル(LLM)は,マルチエージェントシステムの開発を容易にする能力の実証がますます進んでいる。
本稿では,エージェントとワールドインタラクションをひとつのシミュレーションに統合し,複数のエージェントが協調して問題解決を行う方法を提案する。
我々は,2人のルームメイトとエージェントが協調してプログラミング作業を行う物理スタジオアパートの2つのシミュレーションを実装した。
論文 参考訳(メタデータ) (2024-09-14T21:53:35Z) - Large Language Model-based Human-Agent Collaboration for Complex Task
Solving [94.3914058341565]
複雑なタスク解決のためのLarge Language Models(LLM)に基づくヒューマンエージェントコラボレーションの問題を紹介する。
Reinforcement Learning-based Human-Agent Collaboration method, ReHACを提案する。
このアプローチには、タスク解決プロセスにおける人間の介入の最も急進的な段階を決定するために設計されたポリシーモデルが含まれている。
論文 参考訳(メタデータ) (2024-02-20T11:03:36Z) - SOTOPIA: Interactive Evaluation for Social Intelligence in Language Agents [107.4138224020773]
人工エージェントと人間との複雑な社会的相互作用をシミュレートするオープンエンド環境であるSOTOPIAを提案する。
エージェントは、複雑な社会的目標を達成するために協調し、協力し、交換し、互いに競い合う。
GPT-4は,人間よりも目標達成率が著しく低く,社会的常識的推論や戦略的コミュニケーション能力の発揮に苦慮していることがわかった。
論文 参考訳(メタデータ) (2023-10-18T02:27:01Z) - Understanding the World to Solve Social Dilemmas Using Multi-Agent
Reinforcement Learning [0.7161783472741748]
マルチエージェント強化学習環境で世界モデルを学ぶ自己関心有理エージェントの行動について検討する。
シミュレーションの結果,社会的ジレンマが生じるシナリオを扱う場合,世界モデルによって支えられたエージェントのグループは,他のテストされたエージェントよりも優れていた。
論文 参考訳(メタデータ) (2023-05-19T00:31:26Z) - PHASE: PHysically-grounded Abstract Social Events for Machine Social
Perception [50.551003004553806]
私たちは、物理的に根拠のある抽象的なソーシャルイベント、フェーズのデータセットを作成します。
フェーズは人間の実験によって検証され、人間は社会出来事において豊かな相互作用を知覚する。
ベースラインモデルとして,最新のフィードフォワードニューラルネットワークよりも優れたベイズ逆計画手法SIMPLEを導入する。
論文 参考訳(メタデータ) (2021-03-02T18:44:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。