Towards Artificial General or Personalized Intelligence? A Survey on Foundation Models for Personalized Federated Intelligence
- URL: http://arxiv.org/abs/2505.06907v1
- Date: Sun, 11 May 2025 08:57:53 GMT
- Title: Towards Artificial General or Personalized Intelligence? A Survey on Foundation Models for Personalized Federated Intelligence
- Authors: Yu Qiao, Huy Q. Le, Avi Deb Raha, Phuong-Nam Tran, Apurba Adhikary, Mengchun Zhang, Loc X. Nguyen, Eui-Nam Huh, Dusit Niyato, Choong Seon Hong,
- Abstract summary: The rise of large language models (LLMs) has reshaped the artificial intelligence landscape.<n>This paper focuses on adapting these powerful models to meet the specific needs and preferences of users while maintaining privacy and efficiency.<n>We propose personalized federated intelligence (PFI), which integrates the privacy-preserving advantages of federated learning with the zero-shot generalization capabilities of FMs.
- Score: 59.498447610998525
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The rise of large language models (LLMs), such as ChatGPT, DeepSeek, and Grok-3, has reshaped the artificial intelligence landscape. As prominent examples of foundational models (FMs) built on LLMs, these models exhibit remarkable capabilities in generating human-like content, bringing us closer to achieving artificial general intelligence (AGI). However, their large-scale nature, sensitivity to privacy concerns, and substantial computational demands present significant challenges to personalized customization for end users. To bridge this gap, this paper presents the vision of artificial personalized intelligence (API), focusing on adapting these powerful models to meet the specific needs and preferences of users while maintaining privacy and efficiency. Specifically, this paper proposes personalized federated intelligence (PFI), which integrates the privacy-preserving advantages of federated learning (FL) with the zero-shot generalization capabilities of FMs, enabling personalized, efficient, and privacy-protective deployment at the edge. We first review recent advances in both FL and FMs, and discuss the potential of leveraging FMs to enhance federated systems. We then present the key motivations behind realizing PFI and explore promising opportunities in this space, including efficient PFI, trustworthy PFI, and PFI empowered by retrieval-augmented generation (RAG). Finally, we outline key challenges and future research directions for deploying FM-powered FL systems at the edge with improved personalization, computational efficiency, and privacy guarantees. Overall, this survey aims to lay the groundwork for the development of API as a complement to AGI, with a particular focus on PFI as a key enabling technique.
Related papers
- Multi-Modal Multi-Task (M3T) Federated Foundation Models for Embodied AI: Potentials and Challenges for Edge Integration [16.914582808898505]
We introduce Federated Foundation Models (FFMs) for embodied AI.<n>We collect critical deployment dimensions of FFMs in embodied AI ecosystems under a unified framework.<n>We identify concrete challenges and envision actionable research directions.
arXiv Detail & Related papers (2025-05-16T12:49:36Z) - Incentivizing Inclusive Contributions in Model Sharing Markets [47.66231950174746]
This paper proposes inclusive and incentivized personalized federated learning (iPFL)<n>iPFL incentivizes data holders with diverse purposes to collaboratively train personalized models without revealing raw data.<n> Empirical studies on eleven AI tasks demonstrate that iPFL consistently achieves the highest economic utility.
arXiv Detail & Related papers (2025-05-05T08:45:26Z) - Privacy Preserving Machine Learning Model Personalization through Federated Personalized Learning [0.0]
There has been a seismic shift in interest towards the leading paradigm for training Machine Learning (ML) models on decentralized data silos while maintaining data privacy, Federated Learning (FL)<n>This research paper presents a comprehensive performance analysis of a cutting-edge approach to personalize ML model while preserving privacy achieved through Privacy Preserving Machine Learning.<n>According to our analysis, Adaptive Personalized Cross-Silo Federated Learning with Differential Privacy (APPLE+DP) offering efficient execution whereas overall, the use of the Adaptive Personalized Cross-Silo Federated Learning with Homomorphic Encryption (APPLE+HE) algorithm for privacy-preserving machine learning tasks is strongly
arXiv Detail & Related papers (2025-05-03T11:31:38Z) - Privacy-Preserving Federated Embedding Learning for Localized Retrieval-Augmented Generation [60.81109086640437]
We propose a novel framework called Federated Retrieval-Augmented Generation (FedE4RAG)<n>FedE4RAG facilitates collaborative training of client-side RAG retrieval models.<n>We apply homomorphic encryption within federated learning to safeguard model parameters.
arXiv Detail & Related papers (2025-04-27T04:26:02Z) - Ten Challenging Problems in Federated Foundation Models [55.343738234307544]
Federated Foundation Models (FedFMs) represent a distributed learning paradigm that fuses general competences of foundation models as well as privacy-preserving capabilities of federated learning.<n>This paper provides a comprehensive summary of the ten challenging problems inherent in FedFMs, encompassing foundational theory, utilization of private data, continual learning, unlearning, Non-IID and graph data, bidirectional knowledge transfer, incentive mechanism design, game mechanism design, model watermarking, and efficiency.
arXiv Detail & Related papers (2025-02-14T04:01:15Z) - Advancing Personalized Federated Learning: Integrative Approaches with AI for Enhanced Privacy and Customization [0.0]
This paper proposes a novel approach that enhances PFL with cutting-edge AI techniques.<n>We present a model that boosts the performance of individual client models and ensures robust privacy-preserving mechanisms.<n>This work paves the way for a new era of truly personalized and privacy-conscious AI systems.
arXiv Detail & Related papers (2025-01-30T07:03:29Z) - Personalized Wireless Federated Learning for Large Language Models [75.22457544349668]
Large language models (LLMs) have driven profound transformations in wireless networks.<n>Within wireless environments, the training of LLMs faces significant challenges related to security and privacy.<n>This paper presents a systematic analysis of the training stages of LLMs in wireless networks, including pre-training, instruction tuning, and alignment tuning.
arXiv Detail & Related papers (2024-04-20T02:30:21Z) - Forging Vision Foundation Models for Autonomous Driving: Challenges,
Methodologies, and Opportunities [59.02391344178202]
Vision foundation models (VFMs) serve as potent building blocks for a wide range of AI applications.
The scarcity of comprehensive training data, the need for multi-sensor integration, and the diverse task-specific architectures pose significant obstacles to the development of VFMs.
This paper delves into the critical challenge of forging VFMs tailored specifically for autonomous driving, while also outlining future directions.
arXiv Detail & Related papers (2024-01-16T01:57:24Z) - Profit: Benchmarking Personalization and Robustness Trade-off in
Federated Prompt Tuning [40.16581292336117]
In many applications of federated learning (FL), clients desire models that are personalized using their local data, yet are also robust in the sense that they retain general global knowledge.
It is critical to understand how to navigate this personalization vs robustness trade-off when designing federated systems.
arXiv Detail & Related papers (2023-10-06T23:46:33Z) - Secrets of RLHF in Large Language Models Part I: PPO [81.01936993929127]
Large language models (LLMs) have formulated a blueprint for the advancement of artificial general intelligence.
reinforcement learning with human feedback (RLHF) emerges as the pivotal technological paradigm underpinning this pursuit.
In this report, we dissect the framework of RLHF, re-evaluate the inner workings of PPO, and explore how the parts comprising PPO algorithms impact policy agent training.
arXiv Detail & Related papers (2023-07-11T01:55:24Z) - Federated Foundation Models: Privacy-Preserving and Collaborative Learning for Large Models [8.184714897613166]
We propose the Federated Foundation Models (FFMs) paradigm, which combines the benefits of FMs and Federated Learning (FL)
We discuss the potential benefits and challenges of integrating FL into the lifespan of FMs, covering pre-training, fine-tuning, and application.
We explore the possibility of continual/lifelong learning in FFMs, as increased computational power at the edge may unlock the potential for optimizing FMs using newly generated private data close to the data source.
arXiv Detail & Related papers (2023-05-19T03:51:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.