論文の概要: Sensecape: Enabling Multilevel Exploration and Sensemaking with Large
Language Models
- arxiv url: http://arxiv.org/abs/2305.11483v1
- Date: Fri, 19 May 2023 07:31:59 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-22 15:43:44.878862
- Title: Sensecape: Enabling Multilevel Exploration and Sensemaking with Large
Language Models
- Title(参考訳): Sensecape: 大規模言語モデルによるマルチレベル探索とセンスメイキングの実現
- Authors: Sangho Suh, Bryan Min, Srishti Palani, Haijun Xia
- Abstract要約: Sensecapeは,大規模言語モデル(LLM)を用いた複雑な情報処理を支援するインタラクティブシステムである。
ユーザーは多レベルの抽象化を通じて情報の複雑さを管理し、餌食とセンスメイキングをシームレスに切り替えることができる。
Sensecapeはユーザーに対して、より多くのトピックを探索し、知識を階層的に構造化することを可能にする。
- 参考スコア(独自算出の注目度): 5.961192821880361
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: People are increasingly turning to large language models (LLMs) for complex
information tasks like academic research or planning a move to another city.
However, while they often require working in a nonlinear manner - e.g., to
arrange information spatially to organize and make sense of it, current
interfaces for interacting with LLMs are generally linear to support
conversational interaction. To address this limitation and explore how we can
support LLM-powered exploration and sensemaking, we developed Sensecape, an
interactive system designed to support complex information tasks with an LLM by
enabling users to (1) manage the complexity of information through multilevel
abstraction and (2) seamlessly switch between foraging and sensemaking. Our
within-subject user study reveals that Sensecape empowers users to explore more
topics and structure their knowledge hierarchically. We contribute implications
for LLM-based workflows and interfaces for information tasks.
- Abstract(参考訳): 人々は、学術研究や他の都市への移動計画といった複雑な情報処理のために、大きな言語モデル(LLM)に目を向けている。
しかし、例えば、情報を空間的に配置して整理し、理解するためには、しばしば非線型な方法で作業する必要があるが、LLMと対話するための現在のインターフェースは、一般的には会話の相互作用をサポートするために線形である。
この制限に対処し、LLMによる探索とセンスメイキングを支援するために、Sensecapeを開発した。Sensecapeは、LLMで複雑な情報タスクをサポートするための対話型システムであり、ユーザーは(1)多段階の抽象化を通して情報の複雑さを管理し、(2)飼料とセンスメイキングをシームレスに切り替えることができる。
Sensecapeはユーザーがより多くのトピックを探索し、知識を階層的に構造化することを可能にする。
我々は、情報処理のためのLLMベースのワークフローとインタフェースに寄与する。
関連論文リスト
- Navigating the Unknown: A Chat-Based Collaborative Interface for Personalized Exploratory Tasks [35.09558253658275]
本稿ではCARE(Collaborative Assistant for Personalized Exploration)を紹介する。
CARE は多エージェント LLM フレームワークと構造化ユーザインタフェースを組み合わせることにより,探索作業におけるパーソナライズを向上するシステムである。
この結果から, パーソナライズされた問題解決・探索において, CARE が LLM ベースのシステムを受動的情報検索システムから積極的パートナーに転換する可能性が示唆された。
論文 参考訳(メタデータ) (2024-10-31T15:30:55Z) - RA-BLIP: Multimodal Adaptive Retrieval-Augmented Bootstrapping Language-Image Pre-training [55.54020926284334]
近年,MLLM (Multimodal Large Language Models) が注目されている。
検索拡張技術はLLMとMLLMの両方に有効なプラグインであることが証明されている。
本研究では,MLLMの新しい検索支援フレームワークであるRA-BLIP(Retrieval-Augmented Bootstrapping Language-Image Pre-training)を提案する。
論文 参考訳(メタデータ) (2024-10-18T03:45:19Z) - Cognitive LLMs: Towards Integrating Cognitive Architectures and Large Language Models for Manufacturing Decision-making [51.737762570776006]
LLM-ACTRは、ヒトに適応し、多目的な意思決定を提供する新しいニューロシンボリックアーキテクチャである。
我々のフレームワークは、ACT-Rの内部決定過程の知識を潜在神経表現として抽出し、組み込む。
デザイン・フォー・マニュファクチャリング・タスクに関する我々の実験は、タスク性能の向上と基礎的意思決定能力の向上を両立させたものである。
論文 参考訳(メタデータ) (2024-08-17T11:49:53Z) - Wiki-LLaVA: Hierarchical Retrieval-Augmented Generation for Multimodal LLMs [39.54891426369773]
外部知識を必要とする疑問に答える能力を備えたモデルの提供に注力する。
我々のアプローチはWiki-LLaVAと呼ばれ、マルチモーダル文書の外部知識ソースを統合することを目的としている。
我々は,外部データによる視覚的質問応答に適したデータセットについて広範な実験を行い,その妥当性を実証する。
論文 参考訳(メタデータ) (2024-04-23T18:00:09Z) - On the Multi-turn Instruction Following for Conversational Web Agents [83.51251174629084]
本稿では,ユーザと環境の両方で複数回にまたがる高度なインタラクションを必要とする,対話型Webナビゲーションの新たなタスクを紹介する。
本稿では,メモリ利用と自己回帰技術を用いた自己反射型メモリ拡張計画(Self-MAP)を提案する。
論文 参考訳(メタデータ) (2024-02-23T02:18:12Z) - Exploring Interaction Patterns for Debugging: Enhancing Conversational
Capabilities of AI-assistants [18.53732314023887]
大規模言語モデル(LLM)は、プログラマが様々なソフトウェア開発タスクの自然言語説明を得ることを可能にする。
LLMはしばしば十分な文脈なしに行動し、暗黙の仮定や不正確な反応を引き起こす。
本稿では,対話パターンと会話分析からインスピレーションを得て,デバッグのための対話型AIアシスタントRobinを設計する。
論文 参考訳(メタデータ) (2024-02-09T07:44:27Z) - Empowering Language Models with Active Inquiry for Deeper Understanding [31.11672018840381]
対話型エンゲージメントを備えた大規模言語モデルを実現するために設計されたLaMAI(Language Model with Active Inquiry)を紹介する。
LaMAIは、アクティブな学習技術を使用して、最も有意義な質問を提起し、動的双方向対話を育む。
様々な複雑なデータセットにわたる実証研究は、LaMAIの有効性を実証している。
論文 参考訳(メタデータ) (2024-02-06T05:24:16Z) - INTERS: Unlocking the Power of Large Language Models in Search with Instruction Tuning [59.07490387145391]
大規模言語モデル(LLM)は、様々な自然言語処理タスクにおいて印象的な機能を示している。
情報検索(IR)タスクへのそれらの適用は、自然言語における多くのIR固有の概念の頻繁な発生のため、いまだに困難である。
我々は,3つの基本IRカテゴリにまたがる20のタスクを含む新しいインストラクションチューニングデータセット InterS を導入する。
論文 参考訳(メタデータ) (2024-01-12T12:10:28Z) - LanguageMPC: Large Language Models as Decision Makers for Autonomous
Driving [87.1164964709168]
この作業では、複雑な自律運転シナリオの意思決定コンポーネントとして、Large Language Models(LLM)を採用している。
大規模実験により,提案手法は単車載タスクのベースラインアプローチを一貫して超えるだけでなく,複数車載コーディネートにおいても複雑な運転動作の処理にも有効であることが示された。
論文 参考訳(メタデータ) (2023-10-04T17:59:49Z) - Low-code LLM: Graphical User Interface over Large Language Models [115.08718239772107]
本稿では,人間-LLMインタラクションフレームワークであるLow-code LLMを紹介する。
より制御可能で安定した応答を実現するために、6種類のシンプルなローコードビジュアルプログラミングインタラクションを組み込んでいる。
ユーザフレンドリなインタラクション,制御可能な生成,広い適用性という,低コード LLM の3つの利点を強調した。
論文 参考訳(メタデータ) (2023-04-17T09:27:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。