AttriCLIP: A Non-Incremental Learner for Incremental Knowledge Learning
- URL: http://arxiv.org/abs/2305.11488v2
- Date: Wed, 20 Mar 2024 09:44:50 GMT
- Title: AttriCLIP: A Non-Incremental Learner for Incremental Knowledge Learning
- Authors: Runqi Wang, Xiaoyue Duan, Guoliang Kang, Jianzhuang Liu, Shaohui Lin, Songcen Xu, Jinhu Lv, Baochang Zhang,
- Abstract summary: Continual learning aims to enable a model to incrementally learn knowledge from sequentially arrived data.
In this paper, we propose a non-incremental learner, named AttriCLIP, to incrementally extract knowledge of new classes or tasks.
- Score: 53.32576252950481
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Continual learning aims to enable a model to incrementally learn knowledge from sequentially arrived data. Previous works adopt the conventional classification architecture, which consists of a feature extractor and a classifier. The feature extractor is shared across sequentially arrived tasks or classes, but one specific group of weights of the classifier corresponding to one new class should be incrementally expanded. Consequently, the parameters of a continual learner gradually increase. Moreover, as the classifier contains all historical arrived classes, a certain size of the memory is usually required to store rehearsal data to mitigate classifier bias and catastrophic forgetting. In this paper, we propose a non-incremental learner, named AttriCLIP, to incrementally extract knowledge of new classes or tasks. Specifically, AttriCLIP is built upon the pre-trained visual-language model CLIP. Its image encoder and text encoder are fixed to extract features from both images and text. Text consists of a category name and a fixed number of learnable parameters which are selected from our designed attribute word bank and serve as attributes. As we compute the visual and textual similarity for classification, AttriCLIP is a non-incremental learner. The attribute prompts, which encode the common knowledge useful for classification, can effectively mitigate the catastrophic forgetting and avoid constructing a replay memory. We evaluate our AttriCLIP and compare it with CLIP-based and previous state-of-the-art continual learning methods in realistic settings with domain-shift and long-sequence learning. The results show that our method performs favorably against previous state-of-the-arts. The implementation code can be available at https://github.com/bhrqw/AttriCLIP.
Related papers
- Finetuning CLIP to Reason about Pairwise Differences [52.028073305958074]
We propose an approach to train vision-language models such as CLIP in a contrastive manner to reason about differences in embedding space.
We first demonstrate that our approach yields significantly improved capabilities in ranking images by a certain attribute.
We also illustrate that the resulting embeddings obey a larger degree of geometric properties in embedding space.
arXiv Detail & Related papers (2024-09-15T13:02:14Z) - A Hard-to-Beat Baseline for Training-free CLIP-based Adaptation [121.0693322732454]
Contrastive Language-Image Pretraining (CLIP) has gained popularity for its remarkable zero-shot capacity.
Recent research has focused on developing efficient fine-tuning methods to enhance CLIP's performance in downstream tasks.
We revisit a classical algorithm, Gaussian Discriminant Analysis (GDA), and apply it to the downstream classification of CLIP.
arXiv Detail & Related papers (2024-02-06T15:45:27Z) - Incremental Object Detection with CLIP [36.478530086163744]
We propose a visual-language model such as CLIP to generate text feature embeddings for different class sets.
We then employ super-classes to replace the unavailable novel classes in the early learning stage to simulate the incremental scenario.
We incorporate the finely recognized detection boxes as pseudo-annotations into the training process, thereby further improving the detection performance.
arXiv Detail & Related papers (2023-10-13T01:59:39Z) - InfoCL: Alleviating Catastrophic Forgetting in Continual Text
Classification from An Information Theoretic Perspective [44.961805748830066]
We focus on continual text classification under the class-incremental setting.
Recent studies have identified the severe performance decrease on analogous classes as a key factor for forgetting.
We propose a novel replay-based continual text classification method, InfoCL.
arXiv Detail & Related papers (2023-10-10T07:00:13Z) - Class-Incremental Learning: A Survey [84.30083092434938]
Class-Incremental Learning (CIL) enables the learner to incorporate the knowledge of new classes incrementally.
CIL tends to catastrophically forget the characteristics of former ones, and its performance drastically degrades.
We provide a rigorous and unified evaluation of 17 methods in benchmark image classification tasks to find out the characteristics of different algorithms.
arXiv Detail & Related papers (2023-02-07T17:59:05Z) - OrdinalCLIP: Learning Rank Prompts for Language-Guided Ordinal
Regression [94.28253749970534]
We propose to learn the rank concepts from the rich semantic CLIP latent space.
OrdinalCLIP consists of learnable context tokens and learnable rank embeddings.
Experimental results show that our paradigm achieves competitive performance in general ordinal regression tasks.
arXiv Detail & Related papers (2022-06-06T03:54:53Z) - Few-Shot Incremental Learning with Continually Evolved Classifiers [46.278573301326276]
Few-shot class-incremental learning (FSCIL) aims to design machine learning algorithms that can continually learn new concepts from a few data points.
The difficulty lies in that limited data from new classes not only lead to significant overfitting issues but also exacerbate the notorious catastrophic forgetting problems.
We propose a Continually Evolved CIF ( CEC) that employs a graph model to propagate context information between classifiers for adaptation.
arXiv Detail & Related papers (2021-04-07T10:54:51Z) - Class-incremental Learning with Pre-allocated Fixed Classifiers [20.74548175713497]
In class-incremental learning, a learning agent faces a stream of data with the goal of learning new classes while not forgetting previous ones.
We propose a novel fixed classifier in which a number of pre-allocated output nodes are subject to the classification loss right from the beginning of the learning phase.
arXiv Detail & Related papers (2020-10-16T22:40:28Z) - Learning Class Regularized Features for Action Recognition [68.90994813947405]
We introduce a novel method named Class Regularization that performs class-based regularization of layer activations.
We show that using Class Regularization blocks in state-of-the-art CNN architectures for action recognition leads to systematic improvement gains of 1.8%, 1.2% and 1.4% on the Kinetics, UCF-101 and HMDB-51 datasets, respectively.
arXiv Detail & Related papers (2020-02-07T07:27:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.