論文の概要: From Alignment to Entailment: A Unified Textual Entailment Framework for
Entity Alignment
- arxiv url: http://arxiv.org/abs/2305.11501v1
- Date: Fri, 19 May 2023 08:06:50 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-22 15:35:47.032083
- Title: From Alignment to Entailment: A Unified Textual Entailment Framework for
Entity Alignment
- Title(参考訳): アライメントからエンテーメントへ:エンティティアライメントのための統一テキストエンテーメントフレームワーク
- Authors: Yu Zhao, Yike Wu, Xiangrui Cai, Ying Zhang, Haiwei Zhang, Xiaojie Yuan
- Abstract要約: 既存のメソッドは通常、エンティティのトリプルを埋め込みとしてエンコードし、埋め込みの整列を学ぶ。
我々は両トリプルを統一されたテキストシーケンスに変換し、EAタスクを双方向のテキストエンタテインメントタスクとしてモデル化する。
提案手法は,エンティティ間の2種類の情報の統合相関パターンを捕捉し,元のエンティティ情報間のきめ細かい相互作用を明示的にモデル化する。
- 参考スコア(独自算出の注目度): 17.70562397382911
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Entity Alignment (EA) aims to find the equivalent entities between two
Knowledge Graphs (KGs). Existing methods usually encode the triples of entities
as embeddings and learn to align the embeddings, which prevents the direct
interaction between the original information of the cross-KG entities.
Moreover, they encode the relational triples and attribute triples of an entity
in heterogeneous embedding spaces, which prevents them from helping each other.
In this paper, we transform both triples into unified textual sequences, and
model the EA task as a bi-directional textual entailment task between the
sequences of cross-KG entities. Specifically, we feed the sequences of two
entities simultaneously into a pre-trained language model (PLM) and propose two
kinds of PLM-based entity aligners that model the entailment probability
between sequences as the similarity between entities. Our approach captures the
unified correlation pattern of two kinds of information between entities, and
explicitly models the fine-grained interaction between original entity
information. The experiments on five cross-lingual EA datasets show that our
approach outperforms the state-of-the-art EA methods and enables the mutual
enhancement of the heterogeneous information. Codes are available at
https://github.com/OreOZhao/TEA.
- Abstract(参考訳): エンティティアライメント(EA)は、2つの知識グラフ(KG)の間に同等のエンティティを見つけることを目的としている。
既存のメソッドは通常、エンティティのトリプルを埋め込みとしてエンコードし、埋め込みの調整を学ぶ。
さらに、不均一な埋め込み空間における実体の3重項と属性の3重項を符号化し、互いに助け合うのを防ぐ。
本稿では,両トリプルを統一されたテキストシーケンスに変換し,EAタスクをクロスKGエンティティのシーケンス間の双方向テキスト補完タスクとしてモデル化する。
具体的には、2つのエンティティのシーケンスを同時に事前学習した言語モデル (plm) に供給し、シーケンス間の帰属確率をエンティティ間の類似性としてモデル化する2種類のplmベースのエンティティアライナーを提案する。
提案手法は,エンティティ間の2種類の情報の統合相関パターンを捕捉し,元のエンティティ情報間のきめ細かい相互作用をモデル化する。
5つの言語横断型eaデータセットの実験により、このアプローチは最先端のea手法よりも優れており、相互に異種情報の強化が可能となった。
コードはhttps://github.com/oreozhao/teaで入手できる。
関連論文リスト
- DERA: Dense Entity Retrieval for Entity Alignment in Knowledge Graphs [3.500936203815729]
エンティティアライメント(EA)のための高密度エンティティ検索フレームワークを提案する。
我々は言語モデルを活用し、エンティティの様々な特徴を均一にエンコードし、知識グラフ(KG)をまたいで最も近いエンティティ検索を容易にする。
提案手法は,既存のEA手法と比較して最先端の性能を実現する。
論文 参考訳(メタデータ) (2024-08-02T10:12:42Z) - EAGER: Two-Stream Generative Recommender with Behavior-Semantic Collaboration [63.112790050749695]
本稿では,行動情報と意味情報の両方をシームレスに統合する新しい生成推薦フレームワークであるEAGERを紹介する。
EAGERの有効性を4つの公開ベンチマークで検証し,既存手法と比較して優れた性能を示した。
論文 参考訳(メタデータ) (2024-06-20T06:21:56Z) - DRIN: Dynamic Relation Interactive Network for Multimodal Entity Linking [31.15972952813689]
本稿では,MEL タスクのための Dynamic Relation Interactive Network (DRIN) という新しいフレームワークを提案する。
DRINは、参照とエンティティの間の4種類のアライメントを明示的にモデル化し、動的グラフ畳み込みネットワーク(GCN)を構築し、異なる入力サンプルに対して対応するアライメント関係を動的に選択する。
2つのデータセットの実験により、DRINは最先端の手法を大きなマージンで上回り、我々のアプローチの有効性を実証した。
論文 参考訳(メタデータ) (2023-10-09T10:21:42Z) - Prototype-based Embedding Network for Scene Graph Generation [105.97836135784794]
現在のシーングラフ生成(SGG)手法は、コンテキスト情報を探索し、エンティティペア間の関係を予測する。
被写体と対象物の組み合わせが多様であるため、各述語カテゴリーには大きなクラス内変異が存在する。
プロトタイプベースのEmbedding Network (PE-Net) は、エンティティ/述語を、プロトタイプに準拠したコンパクトで独特な表現でモデル化する。
PLは、PE-Netがそのようなエンティティ述語マッチングを効率的に学習するのを助けるために導入され、不明瞭なエンティティ述語マッチングを緩和するためにプロトタイプ正規化(PR)が考案されている。
論文 参考訳(メタデータ) (2023-03-13T13:30:59Z) - Informed Multi-context Entity Alignment [27.679124991733907]
Informed Multi-context Entity Alignment (IMEA)モデルを提案する。
特にTransformerを導入し、関係、経路、近傍のコンテキストを柔軟にキャプチャする。
総論的推論は、埋め込み類似性と関係性/整合性の両方の機能に基づいてアライメント確率を推定するために用いられる。
いくつかのベンチマークデータセットの結果は、既存の最先端エンティティアライメント手法と比較して、IMEAモデルの優位性を示している。
論文 参考訳(メタデータ) (2022-01-02T06:29:30Z) - UniRE: A Unified Label Space for Entity Relation Extraction [67.53850477281058]
合同エンティティ関係抽出モデルでは、2つのサブタスクに対して2つの分離ラベル空間を設定する。
この設定は、エンティティとリレーション間の情報相互作用を妨げる可能性があると我々は主張する。
本研究では,2つのサブタスクのラベル空間における異なる処理を除去することを提案する。
論文 参考訳(メタデータ) (2021-07-09T08:09:37Z) - Cross-lingual Entity Alignment with Adversarial Kernel Embedding and
Adversarial Knowledge Translation [35.77482102674059]
言語間のエンティティアライメントは、しばしば特徴的不整合からシーケンス的コンテキスト無意識の課題に悩まされる。
本稿では,言語間エンティティアライメント(DAEA)のための2つの対向学習フレームワークを提案する。
論文 参考訳(メタデータ) (2021-04-16T00:57:28Z) - RAGA: Relation-aware Graph Attention Networks for Global Entity
Alignment [14.287681294725438]
実体と関係の相互作用を捉えるために,Relation-aware Graph Attention Networksに基づく新しいフレームワークを提案する。
本フレームワークでは,エンティティ情報を関係に分散し,関係情報をエンティティに集約する自己認識機構を採用している。
論文 参考訳(メタデータ) (2021-03-01T06:30:51Z) - Cross-Supervised Joint-Event-Extraction with Heterogeneous Information
Networks [61.950353376870154]
Joint-event- Extractは、トリガとエンティティのタグからなるタグセットを備えたシーケンスからシーケンスまでのラベリングタスクである。
トリガやエンティティの抽出を交互に監督するクロススーパーバイザードメカニズム(CSM)を提案する。
我々の手法は、エンティティとトリガー抽出の両方において最先端の手法よりも優れています。
論文 参考訳(メタデータ) (2020-10-13T11:51:17Z) - Exploring and Evaluating Attributes, Values, and Structures for Entity
Alignment [100.19568734815732]
エンティティアライメント(EA)は、さまざまなKGから等価なエンティティをリンクすることで、リッチコンテンツの統合知識グラフ(KG)を構築することを目的としている。
属性・トリプルは重要なアライメント信号も提供できますが、まだ十分に調査されていません。
本稿では,属性値エンコーダを用いてKGをサブグラフに分割し,属性の様々なタイプを効率的にモデル化することを提案する。
論文 参考訳(メタデータ) (2020-10-07T08:03:58Z) - HittER: Hierarchical Transformers for Knowledge Graph Embeddings [85.93509934018499]
複雑な知識グラフにおける実体と関係の表現を学習するためにHittを提案する。
実験結果から,Hittは複数リンク予測において最先端の新たな結果が得られることがわかった。
さらに,HittをBERTに統合する簡単なアプローチを提案し,その効果を2つのFreebaseファクトイド対応データセットで示す。
論文 参考訳(メタデータ) (2020-08-28T18:58:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。