DiffuSIA: A Spiral Interaction Architecture for Encoder-Decoder Text
Diffusion
- URL: http://arxiv.org/abs/2305.11517v1
- Date: Fri, 19 May 2023 08:30:11 GMT
- Title: DiffuSIA: A Spiral Interaction Architecture for Encoder-Decoder Text
Diffusion
- Authors: Chao-Hong Tan, Jia-Chen Gu, Zhen-Hua Ling
- Abstract summary: A spiral interaction architecture for encoder-decoder text diffusion (DiffuSIA) is proposed.
DiffuSIA is evaluated on four text generation tasks, including paraphrase, text simplification, question generation, and open-domain dialogue generation.
- Score: 40.246665336996934
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Diffusion models have emerged as the new state-of-the-art family of deep
generative models, and their promising potentials for text generation have
recently attracted increasing attention. Existing studies mostly adopt a single
encoder architecture with partially noising processes for conditional text
generation, but its degree of flexibility for conditional modeling is limited.
In fact, the encoder-decoder architecture is naturally more flexible for its
detachable encoder and decoder modules, which is extensible to multilingual and
multimodal generation tasks for conditions and target texts. However, the
encoding process of conditional texts lacks the understanding of target texts.
To this end, a spiral interaction architecture for encoder-decoder text
diffusion (DiffuSIA) is proposed. Concretely, the conditional information from
encoder is designed to be captured by the diffusion decoder, while the target
information from decoder is designed to be captured by the conditional encoder.
These two types of information flow run through multilayer interaction spirally
for deep fusion and understanding. DiffuSIA is evaluated on four text
generation tasks, including paraphrase, text simplification, question
generation, and open-domain dialogue generation. Experimental results show that
DiffuSIA achieves competitive performance among previous methods on all four
tasks, demonstrating the effectiveness and generalization ability of the
proposed method.
Related papers
- Decoder-Only LLMs are Better Controllers for Diffusion Models [63.22040456010123]
We propose to enhance text-to-image diffusion models by borrowing the strength of semantic understanding from large language models.
Our adapter module is superior to the stat-of-the-art models in terms of text-to-image generation quality and reliability.
arXiv Detail & Related papers (2025-02-06T12:17:35Z) - A multimodal LLM for the non-invasive decoding of spoken text from brain recordings [0.4187344935012482]
We propose and end-to-end multimodal LLM for decoding spoken text from fMRI signals.
The proposed architecture is founded on (i) an encoder derived from a specific transformer incorporating an augmented embedding layer for the encoder and a better-adjusted attention mechanism than that present in the state of the art.
A benchmark in performed on a corpus consisting of a set of interactions human-human and human-robot interactions where fMRI and conversational signals are recorded synchronously.
arXiv Detail & Related papers (2024-09-29T14:03:39Z) - TextCraftor: Your Text Encoder Can be Image Quality Controller [65.27457900325462]
Diffusion-based text-to-image generative models, e.g., Stable Diffusion, have revolutionized the field of content generation.
We propose a proposed fine-tuning approach, TextCraftor, to enhance the performance of text-to-image diffusion models.
arXiv Detail & Related papers (2024-03-27T19:52:55Z) - IPAD: Iterative, Parallel, and Diffusion-based Network for Scene Text Recognition [5.525052547053668]
Scene text recognition has attracted more and more attention due to its diverse applications.
Most state-of-the-art methods adopt an encoder-decoder framework with the attention mechanism, autoregressively generating text from left to right.
We propose an alternative solution, using a parallel and iterative decoder that adopts an easy-first decoding strategy.
arXiv Detail & Related papers (2023-12-19T08:03:19Z) - Decoder-Only or Encoder-Decoder? Interpreting Language Model as a
Regularized Encoder-Decoder [75.03283861464365]
The seq2seq task aims at generating the target sequence based on the given input source sequence.
Traditionally, most of the seq2seq task is resolved by an encoder to encode the source sequence and a decoder to generate the target text.
Recently, a bunch of new approaches have emerged that apply decoder-only language models directly to the seq2seq task.
arXiv Detail & Related papers (2023-04-08T15:44:29Z) - Deep Latent-Variable Models for Text Generation [7.119436003155924]
Deep neural network-based end-to-end architectures have been widely adopted.
End-to-end approach conflates all sub-modules, which used to be designed by complex handcrafted rules, into a holistic encode-decode architecture.
This dissertation presents how deep latent-variable models can improve over the standard encoder-decoder model for text generation.
arXiv Detail & Related papers (2022-03-03T23:06:39Z) - VX2TEXT: End-to-End Learning of Video-Based Text Generation From
Multimodal Inputs [103.99315770490163]
We present a framework for text generation from multimodal inputs consisting of video plus text, speech, or audio.
Experiments demonstrate that our approach based on a single architecture outperforms the state-of-the-art on three video-based text-generation tasks.
arXiv Detail & Related papers (2021-01-28T15:22:36Z) - Rethinking and Improving Natural Language Generation with Layer-Wise
Multi-View Decoding [59.48857453699463]
In sequence-to-sequence learning, the decoder relies on the attention mechanism to efficiently extract information from the encoder.
Recent work has proposed to use representations from different encoder layers for diversified levels of information.
We propose layer-wise multi-view decoding, where for each decoder layer, together with the representations from the last encoder layer, which serve as a global view, those from other encoder layers are supplemented for a stereoscopic view of the source sequences.
arXiv Detail & Related papers (2020-05-16T20:00:39Z) - Bi-Decoder Augmented Network for Neural Machine Translation [108.3931242633331]
We propose a novel Bi-Decoder Augmented Network (BiDAN) for the neural machine translation task.
Since each decoder transforms the representations of the input text into its corresponding language, jointly training with two target ends can make the shared encoder has the potential to produce a language-independent semantic space.
arXiv Detail & Related papers (2020-01-14T02:05:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.