論文の概要: Constructing Word-Context-Coupled Space Aligned with Associative
Knowledge Relations for Interpretable Language Modeling
- arxiv url: http://arxiv.org/abs/2305.11543v2
- Date: Tue, 27 Jun 2023 15:45:46 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-28 16:59:26.456563
- Title: Constructing Word-Context-Coupled Space Aligned with Associative
Knowledge Relations for Interpretable Language Modeling
- Title(参考訳): 解釈可能な言語モデルのための連想的知識関係を考慮した単語文脈結合空間の構築
- Authors: Fanyu Wang and Zhenping Xie
- Abstract要約: 事前訓練された言語モデルにおけるディープニューラルネットワークのブラックボックス構造は、言語モデリングプロセスの解釈可能性を大幅に制限する。
解釈不能なニューラル表現と解釈不能な統計論理のアライメント処理を導入することで,ワードコンテキスト結合空間(W2CSpace)を提案する。
我々の言語モデルは,関連する最先端手法と比較して,優れた性能と信頼性の高い解釈能力を実現することができる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: As the foundation of current natural language processing methods, pre-trained
language model has achieved excellent performance. However, the black-box
structure of the deep neural network in pre-trained language models seriously
limits the interpretability of the language modeling process. After revisiting
the coupled requirement of deep neural representation and semantics logic of
language modeling, a Word-Context-Coupled Space (W2CSpace) is proposed by
introducing the alignment processing between uninterpretable neural
representation and interpretable statistical logic. Moreover, a clustering
process is also designed to connect the word- and context-level semantics.
Specifically, an associative knowledge network (AKN), considered interpretable
statistical logic, is introduced in the alignment process for word-level
semantics. Furthermore, the context-relative distance is employed as the
semantic feature for the downstream classifier, which is greatly different from
the current uninterpretable semantic representations of pre-trained models. Our
experiments for performance evaluation and interpretable analysis are executed
on several types of datasets, including SIGHAN, Weibo, and ChnSenti. Wherein a
novel evaluation strategy for the interpretability of machine learning models
is first proposed. According to the experimental results, our language model
can achieve better performance and highly credible interpretable ability
compared to related state-of-the-art methods.
- Abstract(参考訳): 現在の自然言語処理手法の基礎として、事前学習された言語モデルは優れた性能を達成している。
しかし、事前訓練された言語モデルにおけるディープニューラルネットワークのブラックボックス構造は、言語モデリングプロセスの解釈可能性を大幅に制限する。
言語モデリングにおけるディープニューラル表現とセマンティクス論理の結合要件を再考した後,非解釈型ニューラル表現と解釈型統計論理のアライメント処理を導入することで,Word-Context-Coupled Space(W2CSpace)を提案する。
さらに、単語と文脈レベルのセマンティクスを接続するクラスタリングプロセスも設計されている。
具体的には、単語レベルの意味論のアライメントプロセスにおいて、解釈可能な統計論理と見なされる連想知識ネットワーク(AKN)を導入する。
さらに、文脈相対距離は、事前学習されたモデルの現在の解釈不能なセマンティック表現とは大きく異なる下流分類器のセマンティック特徴として使用される。
SIGHAN, Weibo, ChnSenti など, 複数種類のデータセットに対して, 性能評価と解釈解析を行う実験を行った。
一方,機械学習モデルの解釈可能性に関する新たな評価戦略が提案されている。
実験結果によると,我々の言語モデルは,関連する最先端手法と比較して,優れた性能と信頼性の高い解釈能力が得られる。
関連論文リスト
- Distilling Monolingual and Crosslingual Word-in-Context Representations [18.87665111304974]
本研究では,単言語と言語間の両方の設定において,事前学習した言語モデルから文脈における単語の意味表現を除去する手法を提案する。
本手法では,事前学習したモデルのコーパスやパラメータの更新は不要である。
本手法は,事前学習したモデルの異なる隠れ層の出力を自己注意を用いて組み合わせることから学習する。
論文 参考訳(メタデータ) (2024-09-13T11:10:16Z) - On Robustness of Prompt-based Semantic Parsing with Large Pre-trained
Language Model: An Empirical Study on Codex [48.588772371355816]
本稿では,大規模なプロンプトベース言語モデルであるコーデックスの対角的ロバスト性に関する最初の実証的研究について述べる。
この結果から, 最先端の言語モデル(SOTA)は, 慎重に構築された敵の例に対して脆弱であることが示された。
論文 参考訳(メタデータ) (2023-01-30T13:21:00Z) - Learning Semantic Textual Similarity via Topic-informed Discrete Latent
Variables [17.57873577962635]
我々は、意味的テキスト類似性のためのトピックインフォームド離散潜在変数モデルを開発した。
我々のモデルはベクトル量子化による文対表現のための共有潜在空間を学習する。
我々のモデルは意味的テキスト類似性タスクにおいて、いくつかの強力な神経ベースラインを超えることができることを示す。
論文 参考訳(メタデータ) (2022-11-07T15:09:58Z) - Learning Disentangled Representations for Natural Language Definitions [0.0]
テキストデータの連続的な構文的・意味的規則性は、構造的バイアスと生成的要因の両方をモデルに提供するのに有効である、と我々は主張する。
本研究では,文型,定義文の表現的・意味的に密接なカテゴリに存在する意味的構造を利用して,不整合表現を学習するための変分オートエンコーダを訓練する。
論文 参考訳(メタデータ) (2022-09-22T14:31:55Z) - A Unified Understanding of Deep NLP Models for Text Classification [88.35418976241057]
我々は、テキスト分類のためのNLPモデルの統一的な理解を可能にする視覚解析ツールDeepNLPVisを開発した。
主要なアイデアは相互情報に基づく尺度であり、モデルの各レイヤがサンプル内の入力語の情報をどのように保持するかを定量的に説明する。
コーパスレベル、サンプルレベル、単語レベルビジュアライゼーションで構成されるマルチレベルビジュアライゼーションは、全体トレーニングセットから個々のサンプルまでの分析をサポートする。
論文 参考訳(メタデータ) (2022-06-19T08:55:07Z) - Hierarchical Interpretation of Neural Text Classification [31.95426448656938]
本稿では,Hintと呼ばれる階層型インタプリタ型ニューラルテキスト分類器を提案する。
レビューデータセットとニュースデータセットの両方の実験結果から,提案手法は既存の最先端テキスト分類器と同等のテキスト分類結果が得られることが示された。
論文 参考訳(メタデータ) (2022-02-20T11:15:03Z) - Discrete representations in neural models of spoken language [56.29049879393466]
音声言語の弱教師付きモデルの文脈における4つの一般的なメトリクスの利点を比較した。
異なる評価指標が矛盾する結果をもたらすことが分かりました。
論文 参考訳(メタデータ) (2021-05-12T11:02:02Z) - Infusing Finetuning with Semantic Dependencies [62.37697048781823]
シンタックスとは異なり、セマンティクスは今日の事前訓練モデルによって表面化されないことを示す。
次に、畳み込みグラフエンコーダを使用して、タスク固有の微調整にセマンティック解析を明示的に組み込む。
論文 参考訳(メタデータ) (2020-12-10T01:27:24Z) - SLM: Learning a Discourse Language Representation with Sentence
Unshuffling [53.42814722621715]
談話言語表現を学習するための新しい事前学習目的である文レベル言語モデリングを導入する。
本モデルでは,この特徴により,従来のBERTの性能が大幅に向上することを示す。
論文 参考訳(メタデータ) (2020-10-30T13:33:41Z) - How Far are We from Effective Context Modeling? An Exploratory Study on
Semantic Parsing in Context [59.13515950353125]
文法に基づく意味解析を行い,その上に典型的な文脈モデリング手法を適用する。
我々は,2つの大きなクロスドメインデータセットに対して,13のコンテキストモデリング手法を評価した。
論文 参考訳(メタデータ) (2020-02-03T11:28:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。