論文の概要: Distilling Monolingual and Crosslingual Word-in-Context Representations
- arxiv url: http://arxiv.org/abs/2409.08719v1
- Date: Fri, 13 Sep 2024 11:10:16 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-16 16:58:47.402249
- Title: Distilling Monolingual and Crosslingual Word-in-Context Representations
- Title(参考訳): 単言語およびクロスリンガル単語の文脈表現の蒸留
- Authors: Yuki Arase, Tomoyuki Kajiwara,
- Abstract要約: 本研究では,単言語と言語間の両方の設定において,事前学習した言語モデルから文脈における単語の意味表現を除去する手法を提案する。
本手法では,事前学習したモデルのコーパスやパラメータの更新は不要である。
本手法は,事前学習したモデルの異なる隠れ層の出力を自己注意を用いて組み合わせることから学習する。
- 参考スコア(独自算出の注目度): 18.87665111304974
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this study, we propose a method that distils representations of word meaning in context from a pre-trained masked language model in both monolingual and crosslingual settings. Word representations are the basis for context-aware lexical semantics and unsupervised semantic textual similarity (STS) estimation. Different from existing approaches, our method does not require human-annotated corpora nor updates of the parameters of the pre-trained model. The latter feature is appealing for practical scenarios where the off-the-shelf pre-trained model is a common asset among different applications. Specifically, our method learns to combine the outputs of different hidden layers of the pre-trained model using self-attention. Our auto-encoder based training only requires an automatically generated corpus. To evaluate the performance of the proposed approach, we performed extensive experiments using various benchmark tasks. The results on the monolingual tasks confirmed that our representations exhibited a competitive performance compared to that of the previous study for the context-aware lexical semantic tasks and outperformed it for STS estimation. The results of the crosslingual tasks revealed that the proposed method largely improved crosslingual word representations of multilingual pre-trained models.
- Abstract(参考訳): 本研究では,モノリンガルとクロスリンガルの両方の設定において,事前学習したマスキング言語モデルから文脈における単語の意味表現を除去する手法を提案する。
単語表現は文脈対応の語彙意味論と教師なし意味的テキスト類似性(STS)推定の基礎である。
既存の手法と異なり,本手法では,事前学習したモデルのコーパスやパラメータの更新は必要としない。
後者の特徴は、オフザシェルフ事前訓練モデルが異なるアプリケーション間で共通の資産である、実践的なシナリオにアピールする。
特に,本手法では,事前学習したモデルの隠蔽層の出力を自己注意を用いて組み合わせることについて学習する。
自動エンコーダベースのトレーニングでは、自動生成されたコーパスのみが必要になります。
提案手法の性能を評価するため,様々なベンチマークタスクを用いて広範囲な実験を行った。
単言語タスクの結果,従来の文脈対応語彙意味タスクと比較すると,我々の表現は競合的な性能を示し,STS推定では優れていたことが確認された。
その結果,提案手法は多言語事前学習モデルの言語間単語表現を大幅に改善することがわかった。
関連論文リスト
- Optimal Transport Posterior Alignment for Cross-lingual Semantic Parsing [68.47787275021567]
言語間のセマンティックパーシングは、高いソース言語(例えば英語)から少ないトレーニングデータを持つ低リソース言語へのパーシング能力を伝達する。
そこで本稿では,最適輸送を用いた係り受け変数間の言語間相違を明示的に最小化することで,言語間セマンティック解析のための新しい手法を提案する。
論文 参考訳(メタデータ) (2023-07-09T04:52:31Z) - Multilingual Few-Shot Learning via Language Model Retrieval [18.465566186549072]
トランスフォーマーベースの言語モデルは、数ショットのインコンテキスト学習において顕著な成功を収めた。
本研究は,意味論的に類似したショットサンプルを検索し,コンテキストとして利用する研究である。
提案手法を,意図検出,質問分類,感情分析,話題分類に関連する5つの自然言語理解データセット上で評価した。
論文 参考訳(メタデータ) (2023-06-19T14:27:21Z) - Constructing Word-Context-Coupled Space Aligned with Associative
Knowledge Relations for Interpretable Language Modeling [0.0]
事前訓練された言語モデルにおけるディープニューラルネットワークのブラックボックス構造は、言語モデリングプロセスの解釈可能性を大幅に制限する。
解釈不能なニューラル表現と解釈不能な統計論理のアライメント処理を導入することで,ワードコンテキスト結合空間(W2CSpace)を提案する。
我々の言語モデルは,関連する最先端手法と比較して,優れた性能と信頼性の高い解釈能力を実現することができる。
論文 参考訳(メタデータ) (2023-05-19T09:26:02Z) - Beyond Contrastive Learning: A Variational Generative Model for
Multilingual Retrieval [109.62363167257664]
本稿では,多言語テキスト埋め込み学習のための生成モデルを提案する。
我々のモデルは、$N$言語で並列データを操作する。
本手法は, 意味的類似性, ビットクストマイニング, 言語間質問検索などを含む一連のタスクに対して評価を行う。
論文 参考訳(メタデータ) (2022-12-21T02:41:40Z) - ERNIE-M: Enhanced Multilingual Representation by Aligning Cross-lingual
Semantics with Monolingual Corpora [21.78571365050787]
ERNIE-Mは、複数の言語の表現をモノリンガルコーパスと整合させる新しいトレーニング手法である。
単言語コーパス上で擬似並列文ペアを生成し、異なる言語間のセマンティックアライメントの学習を可能にする。
実験結果から,ERNIE-Mは既存の言語間モデルよりも優れており,様々な言語間下流タスクに対して新たな最先端結果を提供することがわかった。
論文 参考訳(メタデータ) (2020-12-31T15:52:27Z) - Unsupervised Domain Adaptation of a Pretrained Cross-Lingual Language
Model [58.27176041092891]
最近の研究は、大規模未ラベルテキストに対する言語間言語モデルの事前学習が、大幅な性能向上をもたらすことを示唆している。
本稿では,絡み合った事前学習した言語間表現からドメイン固有の特徴を自動的に抽出する,教師なし特徴分解手法を提案する。
提案モデルでは、相互情報推定を利用して、言語間モデルによって計算された表現をドメイン不変部分とドメイン固有部分に分解する。
論文 参考訳(メタデータ) (2020-11-23T16:00:42Z) - Cross-lingual Spoken Language Understanding with Regularized
Representation Alignment [71.53159402053392]
外部リソースを使わずに言語間で単語レベルの表現と文レベルの表現を整列する正規化手法を提案する。
言語間言語理解タスクの実験により、我々のモデルは、数ショットとゼロショットの両方のシナリオにおいて、最先端の手法よりも優れていることが示された。
論文 参考訳(メタデータ) (2020-09-30T08:56:53Z) - InfoXLM: An Information-Theoretic Framework for Cross-Lingual Language
Model Pre-Training [135.12061144759517]
本稿では,言語間言語モデルの事前学習を定式化する情報理論フレームワークを提案する。
コントラスト学習に基づく新しい事前学習課題を提案する。
単言語コーパスと並列コーパスの両方を活用することで、事前訓練されたモデルの言語間変換性を向上させるために、プレテキストを共同で訓練する。
論文 参考訳(メタデータ) (2020-07-15T16:58:01Z) - Exploring Fine-tuning Techniques for Pre-trained Cross-lingual Models
via Continual Learning [74.25168207651376]
訓練済みの言語モデルから下流の言語間タスクへの微調整は、有望な結果を示している。
ダウンストリームタスクに微調整する場合、継続学習を活用して、事前学習したモデルの言語間能力を維持する。
提案手法は、ゼロショット言語間タグ付けや名前付きエンティティ認識タスクにおいて、他の微調整ベースラインよりも優れた性能を実現する。
論文 参考訳(メタデータ) (2020-04-29T14:07:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。