Bayesian approach to Gaussian process regression with uncertain inputs
- URL: http://arxiv.org/abs/2305.11586v2
- Date: Sun, 28 May 2023 11:41:15 GMT
- Title: Bayesian approach to Gaussian process regression with uncertain inputs
- Authors: Dongwei Ye, Mengwu Guo
- Abstract summary: In this work, we propose a Bayesian method that integrates the variability of input data into Gaussian process regression.
The effectiveness of this new regression technique is demonstrated through several numerical examples.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Conventional Gaussian process regression exclusively assumes the existence of
noise in the output data of model observations. In many scientific and
engineering applications, however, the input locations of observational data
may also be compromised with uncertainties owing to modeling assumptions,
measurement errors, etc. In this work, we propose a Bayesian method that
integrates the variability of input data into Gaussian process regression.
Considering two types of observables -- noise-corrupted outputs with fixed
inputs and those with prior-distribution-defined uncertain inputs, a posterior
distribution is estimated via a Bayesian framework to infer the uncertain data
locations. Thereafter, such quantified uncertainties of inputs are incorporated
into Gaussian process predictions by means of marginalization. The
effectiveness of this new regression technique is demonstrated through several
numerical examples, in which a consistently good performance of generalization
is observed, while a substantial reduction in the predictive uncertainties is
achieved by the Bayesian inference of uncertain inputs.
Related papers
- Deep Operator Networks for Bayesian Parameter Estimation in PDEs [0.0]
We present a novel framework combining Deep Operator Networks (DeepONets) with Physics-Informed Neural Networks (PINNs) to solve partial differential equations (PDEs)
By integrating data-driven learning with physical constraints, our method achieves robust and accurate solutions across diverse scenarios.
arXiv Detail & Related papers (2025-01-18T07:41:05Z) - Progression: an extrapolation principle for regression [0.0]
We propose a novel statistical extrapolation principle.
It assumes a simple relationship between predictors and the response at the boundary of the training predictor samples.
Our semi-parametric method, progression, leverages this extrapolation principle and offers guarantees on the approximation error beyond the training data range.
arXiv Detail & Related papers (2024-10-30T17:29:51Z) - Total Uncertainty Quantification in Inverse PDE Solutions Obtained with Reduced-Order Deep Learning Surrogate Models [50.90868087591973]
We propose an approximate Bayesian method for quantifying the total uncertainty in inverse PDE solutions obtained with machine learning surrogate models.
We test the proposed framework by comparing it with the iterative ensemble smoother and deep ensembling methods for a non-linear diffusion equation.
arXiv Detail & Related papers (2024-08-20T19:06:02Z) - Inflationary Flows: Calibrated Bayesian Inference with Diffusion-Based Models [0.0]
We show how diffusion-based models can be repurposed for performing principled, identifiable Bayesian inference.
We show how such maps can be learned via standard DBM training using a novel noise schedule.
The result is a class of highly expressive generative models, uniquely defined on a low-dimensional latent space.
arXiv Detail & Related papers (2024-07-11T19:58:19Z) - A local squared Wasserstein-2 method for efficient reconstruction of models with uncertainty [0.0]
We propose a local squared Wasserstein-2 (W_2) method to solve the inverse problem of reconstructing models with uncertain latent variables or parameters.
A key advantage of our approach is that it does not require prior information on the distribution of the latent variables or parameters in the underlying models.
arXiv Detail & Related papers (2024-06-10T22:15:55Z) - Sparse discovery of differential equations based on multi-fidelity
Gaussian process [0.8088384541966945]
Sparse identification of differential equations aims to compute the analytic expressions from the observed data explicitly.
It exhibits sensitivity to the noise in the observed data, particularly for the derivatives computations.
Existing literature predominantly concentrates on single-fidelity (SF) data, which imposes limitations on its applicability.
We present two novel approaches to address these problems from the view of uncertainty quantification.
arXiv Detail & Related papers (2024-01-22T10:38:14Z) - Towards stable real-world equation discovery with assessing
differentiating quality influence [52.2980614912553]
We propose alternatives to the commonly used finite differences-based method.
We evaluate these methods in terms of applicability to problems, similar to the real ones, and their ability to ensure the convergence of equation discovery algorithms.
arXiv Detail & Related papers (2023-11-09T23:32:06Z) - Selective Nonparametric Regression via Testing [54.20569354303575]
We develop an abstention procedure via testing the hypothesis on the value of the conditional variance at a given point.
Unlike existing methods, the proposed one allows to account not only for the value of the variance itself but also for the uncertainty of the corresponding variance predictor.
arXiv Detail & Related papers (2023-09-28T13:04:11Z) - Quantification of Predictive Uncertainty via Inference-Time Sampling [57.749601811982096]
We propose a post-hoc sampling strategy for estimating predictive uncertainty accounting for data ambiguity.
The method can generate different plausible outputs for a given input and does not assume parametric forms of predictive distributions.
arXiv Detail & Related papers (2023-08-03T12:43:21Z) - Semi-Parametric Inference for Doubly Stochastic Spatial Point Processes: An Approximate Penalized Poisson Likelihood Approach [3.085995273374333]
Doubly-stochastic point processes model the occurrence of events over a spatial domain as an inhomogeneous process conditioned on the realization of a random intensity function.
Existing implementations of doubly-stochastic spatial models are computationally demanding, often have limited theoretical guarantee, and/or rely on restrictive assumptions.
arXiv Detail & Related papers (2023-06-11T19:48:39Z) - Adversarial robustness of amortized Bayesian inference [3.308743964406687]
Amortized Bayesian inference is to initially invest computational cost in training an inference network on simulated data.
We show that almost unrecognizable, targeted perturbations of the observations can lead to drastic changes in the predicted posterior and highly unrealistic posterior predictive samples.
We propose a computationally efficient regularization scheme based on penalizing the Fisher information of the conditional density estimator.
arXiv Detail & Related papers (2023-05-24T10:18:45Z) - Score-based Diffusion Models in Function Space [137.70916238028306]
Diffusion models have recently emerged as a powerful framework for generative modeling.
This work introduces a mathematically rigorous framework called Denoising Diffusion Operators (DDOs) for training diffusion models in function space.
We show that the corresponding discretized algorithm generates accurate samples at a fixed cost independent of the data resolution.
arXiv Detail & Related papers (2023-02-14T23:50:53Z) - Robust Gaussian Process Regression with Huber Likelihood [2.7184224088243365]
We propose a robust process model in the Gaussian process framework with the likelihood of observed data expressed as the Huber probability distribution.
The proposed model employs weights based on projection statistics to scale residuals and bound the influence of vertical outliers and bad leverage points on the latent functions estimates.
arXiv Detail & Related papers (2023-01-19T02:59:33Z) - Posterior and Computational Uncertainty in Gaussian Processes [52.26904059556759]
Gaussian processes scale prohibitively with the size of the dataset.
Many approximation methods have been developed, which inevitably introduce approximation error.
This additional source of uncertainty, due to limited computation, is entirely ignored when using the approximate posterior.
We develop a new class of methods that provides consistent estimation of the combined uncertainty arising from both the finite number of data observed and the finite amount of computation expended.
arXiv Detail & Related papers (2022-05-30T22:16:25Z) - CovarianceNet: Conditional Generative Model for Correct Covariance
Prediction in Human Motion Prediction [71.31516599226606]
We present a new method to correctly predict the uncertainty associated with the predicted distribution of future trajectories.
Our approach, CovariaceNet, is based on a Conditional Generative Model with Gaussian latent variables.
arXiv Detail & Related papers (2021-09-07T09:38:24Z) - Aleatoric uncertainty for Errors-in-Variables models in deep regression [0.48733623015338234]
We show how the concept of Errors-in-Variables can be used in Bayesian deep regression.
We discuss the approach along various simulated and real examples.
arXiv Detail & Related papers (2021-05-19T12:37:02Z) - Optimal oracle inequalities for solving projected fixed-point equations [53.31620399640334]
We study methods that use a collection of random observations to compute approximate solutions by searching over a known low-dimensional subspace of the Hilbert space.
We show how our results precisely characterize the error of a class of temporal difference learning methods for the policy evaluation problem with linear function approximation.
arXiv Detail & Related papers (2020-12-09T20:19:32Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
We develop an approximate Bayesian inference scheme based on posterior regularisation.
We demonstrate the utility of our method in the context of transferring prognostic models of prostate cancer across globally diverse populations.
arXiv Detail & Related papers (2020-06-26T13:50:19Z) - Learning to Predict Error for MRI Reconstruction [67.76632988696943]
We demonstrate that predictive uncertainty estimated by the current methods does not highly correlate with prediction error.
We propose a novel method that estimates the target labels and magnitude of the prediction error in two steps.
arXiv Detail & Related papers (2020-02-13T15:55:32Z) - Robust Gaussian Process Regression with a Bias Model [0.6850683267295248]
Most existing approaches replace an outlier-prone Gaussian likelihood with a non-Gaussian likelihood induced from a heavy tail distribution.
The proposed approach models an outlier as a noisy and biased observation of an unknown regression function.
Conditioned on the bias estimates, the robust GP regression can be reduced to a standard GP regression problem.
arXiv Detail & Related papers (2020-01-14T06:21:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.