Deep Operator Networks for Bayesian Parameter Estimation in PDEs
- URL: http://arxiv.org/abs/2501.10684v1
- Date: Sat, 18 Jan 2025 07:41:05 GMT
- Title: Deep Operator Networks for Bayesian Parameter Estimation in PDEs
- Authors: Amogh Raj, Carol Eunice Gudumotou, Sakol Bun, Keerthana Srinivasa, Arash Sarshar,
- Abstract summary: We present a novel framework combining Deep Operator Networks (DeepONets) with Physics-Informed Neural Networks (PINNs) to solve partial differential equations (PDEs)
By integrating data-driven learning with physical constraints, our method achieves robust and accurate solutions across diverse scenarios.
- Score: 0.0
- License:
- Abstract: We present a novel framework combining Deep Operator Networks (DeepONets) with Physics-Informed Neural Networks (PINNs) to solve partial differential equations (PDEs) and estimate their unknown parameters. By integrating data-driven learning with physical constraints, our method achieves robust and accurate solutions across diverse scenarios. Bayesian training is implemented through variational inference, allowing for comprehensive uncertainty quantification for both aleatoric and epistemic uncertainties. This ensures reliable predictions and parameter estimates even in noisy conditions or when some of the physical equations governing the problem are missing. The framework demonstrates its efficacy in solving forward and inverse problems, including the 1D unsteady heat equation and 2D reaction-diffusion equations, as well as regression tasks with sparse, noisy observations. This approach provides a computationally efficient and generalizable method for addressing uncertainty quantification in PDE surrogate modeling.
Related papers
- FEM-based Neural Networks for Solving Incompressible Fluid Flows and Related Inverse Problems [41.94295877935867]
numerical simulation and optimization of technical systems described by partial differential equations is expensive.
A comparatively new approach in this context is to combine the good approximation properties of neural networks with the classical finite element method.
In this paper, we extend this approach to saddle-point and non-linear fluid dynamics problems, respectively.
arXiv Detail & Related papers (2024-09-06T07:17:01Z) - Total Uncertainty Quantification in Inverse PDE Solutions Obtained with Reduced-Order Deep Learning Surrogate Models [50.90868087591973]
We propose an approximate Bayesian method for quantifying the total uncertainty in inverse PDE solutions obtained with machine learning surrogate models.
We test the proposed framework by comparing it with the iterative ensemble smoother and deep ensembling methods for a non-linear diffusion equation.
arXiv Detail & Related papers (2024-08-20T19:06:02Z) - FUSE: Fast Unified Simulation and Estimation for PDEs [11.991297011923004]
We argue that solving both problems within the same framework can lead to consistent gains in accuracy and robustness.
We present the capabilities of the proposed methodology for predicting continuous and discrete biomarkers in full-body haemodynamics simulations.
arXiv Detail & Related papers (2024-05-23T13:37:26Z) - Using Uncertainty Quantification to Characterize and Improve Out-of-Domain Learning for PDEs [44.890946409769924]
Neural Operators (NOs) have emerged as particularly promising quantification.
We show that ensembling several NOs can identify high-error regions and provide good uncertainty estimates.
We then introduce Operator-ProbConserv, a method that uses these well-calibrated UQ estimates within the ProbConserv framework to update the model.
arXiv Detail & Related papers (2024-03-15T19:21:27Z) - Towards stable real-world equation discovery with assessing
differentiating quality influence [52.2980614912553]
We propose alternatives to the commonly used finite differences-based method.
We evaluate these methods in terms of applicability to problems, similar to the real ones, and their ability to ensure the convergence of equation discovery algorithms.
arXiv Detail & Related papers (2023-11-09T23:32:06Z) - PDE-constrained Gaussian process surrogate modeling with uncertain data locations [1.943678022072958]
We propose a Bayesian approach that integrates the variability of input data into the Gaussian process regression for function and partial differential equation approximation.
A consistently good performance of generalization is observed, and a substantial reduction in the predictive uncertainties is achieved.
arXiv Detail & Related papers (2023-05-19T10:53:08Z) - Random Grid Neural Processes for Parametric Partial Differential
Equations [5.244037702157957]
We introduce a new class of spatially probabilistic physics and data informed deep latent models for PDEs.
We solve forward and inverse problems for parametric PDEs in a way that leads to the construction of Gaussian process models of solution fields.
We show how to incorporate noisy data in a principled manner into our physics informed model to improve predictions for problems where data may be available.
arXiv Detail & Related papers (2023-01-26T11:30:56Z) - MAntRA: A framework for model agnostic reliability analysis [0.0]
We propose a novel model data-driven reliability analysis framework for time-dependent reliability analysis.
The proposed approach combines interpretable machine learning, Bayesian statistics, and identifying dynamic equation.
Results indicate the possible application of the proposed approach for reliability analysis of insitu and heritage structures from on-site measurements.
arXiv Detail & Related papers (2022-12-13T00:57:09Z) - Fully probabilistic deep models for forward and inverse problems in
parametric PDEs [1.9599274203282304]
We introduce a physics-driven deep latent variable model (PDDLVM) to learn simultaneously parameter-to-solution (forward) and solution-to- parameter (inverse) maps of PDEs.
The proposed framework can be easily extended to seamlessly integrate observed data to solve inverse problems and to build generative models.
We demonstrate the efficiency and robustness of our method on finite element discretized parametric PDE problems.
arXiv Detail & Related papers (2022-08-09T15:40:53Z) - Accurate and Reliable Forecasting using Stochastic Differential
Equations [48.21369419647511]
It is critical yet challenging for deep learning models to properly characterize uncertainty that is pervasive in real-world environments.
This paper develops SDE-HNN to characterize the interaction between the predictive mean and variance of HNNs for accurate and reliable regression.
Experiments on the challenging datasets show that our method significantly outperforms the state-of-the-art baselines in terms of both predictive performance and uncertainty quantification.
arXiv Detail & Related papers (2021-03-28T04:18:11Z) - SDE-Net: Equipping Deep Neural Networks with Uncertainty Estimates [45.43024126674237]
Uncertainty quantification is a fundamental yet unsolved problem for deep learning.
Bayesian framework provides principled way of uncertainty estimation but is often not scalable to modern deep neural nets (DNNs)
We propose a new method for quantifying uncertainties of DNNs from a dynamical system perspective.
arXiv Detail & Related papers (2020-08-24T16:33:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.