論文の概要: Introspective Tips: Large Language Model for In-Context Decision Making
- arxiv url: http://arxiv.org/abs/2305.11598v1
- Date: Fri, 19 May 2023 11:20:37 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-22 14:46:44.423014
- Title: Introspective Tips: Large Language Model for In-Context Decision Making
- Title(参考訳): イントロスペクティブ・チップ:インテクスト決定のための大規模言語モデル
- Authors: Liting Chen, Lu Wang, Hang Dong, Yali Du, Jie Yan, Fangkai Yang,
Shuang Li, Pu Zhao, Si Qin, Saravan Rajmohan, Qingwei Lin, Dongmei Zhang
- Abstract要約: 我々は,大規模言語モデル(LLM)の自己最適化を促進するために,イントロスペクティブティップス(Introspective Tips)を採用している。
本手法は,少数ショットとゼロショットの両方の学習状況において,エージェントの性能を向上させる。
TextWorldにおける100以上のゲームに関する実験は、我々のアプローチの優れたパフォーマンスを示している。
- 参考スコア(独自算出の注目度): 48.96711664648164
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The emergence of large language models (LLMs) has substantially influenced
natural language processing, demonstrating exceptional results across various
tasks. In this study, we employ ``Introspective Tips" to facilitate LLMs in
self-optimizing their decision-making. By introspectively examining
trajectories, LLM refines its policy by generating succinct and valuable tips.
Our method enhances the agent's performance in both few-shot and zero-shot
learning situations by considering three essential scenarios: learning from the
agent's past experiences, integrating expert demonstrations, and generalizing
across diverse games. Importantly, we accomplish these improvements without
fine-tuning the LLM parameters; rather, we adjust the prompt to generalize
insights from the three aforementioned situations. Our framework not only
supports but also emphasizes the advantage of employing LLM in in-contxt
decision-making. Experiments involving over 100 games in TextWorld illustrate
the superior performance of our approach.
- Abstract(参考訳): 大規模言語モデル(LLM)の出現は自然言語処理に大きな影響を与え、様々なタスクにおいて例外的な結果を示した。
本研究では,LLMの自己最適化を支援するために,「イントロスペクティブティップス」を用いた。
軌道を内省的に調べることで、LLMは簡潔で価値のあるヒントを生成することでその方針を洗練させる。
本手法は,エージェントの過去の経験から学ぶこと,専門家によるデモンストレーションを統合すること,多種多様なゲームにまたがって一般化すること,の3つの重要なシナリオを考慮して,エージェントのパフォーマンスを向上させる。
重要なことは、これらの改善はLLMパラメータを微調整することなく達成し、上記の3つの状況からの洞察を一般化するプロンプトを調整することである。
当社のフレームワークは, サポートだけでなく, コンタクスト内意思決定において LLM を採用するメリットも強調している。
TextWorldにおける100以上のゲームに関する実験は、我々のアプローチの優れたパフォーマンスを示している。
関連論文リスト
- Perspective Transition of Large Language Models for Solving Subjective Tasks [18.322631948136973]
パースペクティブ・トランジション(RPT)による推論(Reasoning through Perspective transition)は、LLMが直接、役割、第三者の視点を動的に選択できる、コンテキスト内学習に基づく手法である。
提案手法は,チェーン・オブ・シークレット・プロンプトやエキスパート・プロンプトといった,単一の固定視点に基づく手法よりも優れている。
論文 参考訳(メタデータ) (2025-01-16T03:30:47Z) - What Makes In-context Learning Effective for Mathematical Reasoning: A Theoretical Analysis [81.15503859645149]
本稿では,大規模言語モデルの推論性能に及ぼす文脈内実演の影響を理論的に解析することを目的とする。
本稿では, LMS3 という, 単純で一般化可能な, 低複雑さな実演選択法を提案する。
論文 参考訳(メタデータ) (2024-12-11T11:38:11Z) - Large Language Models Know What Makes Exemplary Contexts [42.90814615222177]
In-context Learning (ICL) は、Large Language Model (LLM) の発展において重要な機能であることが証明されている。
本稿では,LLMのための統合フレームワークを提案する。このフレームワークにより,影響力のあるインコンテキストのサンプルを自己選択してコンテキストを構成することができる。
論文 参考訳(メタデータ) (2024-08-14T12:32:41Z) - Analyzing and Adapting Large Language Models for Few-Shot Multilingual
NLU: Are We There Yet? [82.02076369811402]
教師付きファインチューニング(SFT)、教師付きインストラクションチューニング(SIT)、インコンテキストラーニング(ICL)は、3つの代替であり、事実上の標準的アプローチである。
提案手法は,6つの高・低リソース言語,3つの異なるNLUタスク,多種多様な言語とドメインのセットアップを用いて,3つのアプローチを網羅的かつ体系的に比較する。
そこで本研究では,教師あり指導のチューニングが,性能とリソース要件の最良のトレードオフであることを示す。
論文 参考訳(メタデータ) (2024-03-04T10:48:13Z) - FAC$^2$E: Better Understanding Large Language Model Capabilities by Dissociating Language and Cognition [56.76951887823882]
大規模言語モデル(LLM)は、主に様々なテキスト理解および生成タスクにおける全体的なパフォーマンスによって評価される。
FAC$2$E, FAC$2$Eについて述べる。
論文 参考訳(メタデータ) (2024-02-29T21:05:37Z) - Supervised Knowledge Makes Large Language Models Better In-context Learners [94.89301696512776]
大規模言語モデル(LLM)は、素早い工学を通して、文脈内学習能力の出現を示す。
自然言語理解と質問応答におけるLLMの一般化性と事実性の向上という課題は、まだ未解決のままである。
本研究では, LLM の信頼性を高める枠組みを提案する。1) 分布外データの一般化,2) 差別モデルによる LLM のメリットの解明,3) 生成タスクにおける幻覚の最小化。
論文 参考訳(メタデータ) (2023-12-26T07:24:46Z) - LLM-Rec: Personalized Recommendation via Prompting Large Language Models [62.481065357472964]
大きな言語モデル(LLM)は、常識的な知識と推論を活用する能力を示した。
大規模言語モデル(LLM)の最近の進歩は、コモンセンスの知識と推論を活用できることを顕著に示している。
本研究では,パーソナライズされたテキストベースのレコメンデーションを改善するために,テキストエンリッチメントの4つの異なる促進戦略を取り入れた新しいアプローチ LLM-Rec を提案する。
論文 参考訳(メタデータ) (2023-07-24T18:47:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。