論文の概要: Perspective Transition of Large Language Models for Solving Subjective Tasks
- arxiv url: http://arxiv.org/abs/2501.09265v1
- Date: Thu, 16 Jan 2025 03:30:47 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-17 15:11:45.011324
- Title: Perspective Transition of Large Language Models for Solving Subjective Tasks
- Title(参考訳): 主観的課題解決のための大規模言語モデルの視点遷移
- Authors: Xiaolong Wang, Yuanchi Zhang, Ziyue Wang, Yuzhuang Xu, Fuwen Luo, Yile Wang, Peng Li, Yang Liu,
- Abstract要約: パースペクティブ・トランジション(RPT)による推論(Reasoning through Perspective transition)は、LLMが直接、役割、第三者の視点を動的に選択できる、コンテキスト内学習に基づく手法である。
提案手法は,チェーン・オブ・シークレット・プロンプトやエキスパート・プロンプトといった,単一の固定視点に基づく手法よりも優れている。
- 参考スコア(独自算出の注目度): 18.322631948136973
- License:
- Abstract: Large language models (LLMs) have revolutionized the field of natural language processing, enabling remarkable progress in various tasks. Different from objective tasks such as commonsense reasoning and arithmetic question-answering, the performance of LLMs on subjective tasks is still limited, where the perspective on the specific problem plays crucial roles for better interpreting the context and giving proper response. For example, in certain scenarios, LLMs may perform better when answering from an expert role perspective, potentially eliciting their relevant domain knowledge. In contrast, in some scenarios, LLMs may provide more accurate responses when answering from a third-person standpoint, enabling a more comprehensive understanding of the problem and potentially mitigating inherent biases. In this paper, we propose Reasoning through Perspective Transition (RPT), a method based on in-context learning that enables LLMs to dynamically select among direct, role, and third-person perspectives for the best way to solve corresponding subjective problem. Through extensive experiments on totally 12 subjective tasks by using both closed-source and open-source LLMs including GPT-4, GPT-3.5, Llama-3, and Qwen-2, our method outperforms widely used single fixed perspective based methods such as chain-of-thought prompting and expert prompting, highlights the intricate ways that LLMs can adapt their perspectives to provide nuanced and contextually appropriate responses for different problems.
- Abstract(参考訳): 大規模言語モデル(LLM)は自然言語処理の分野に革命をもたらし、様々なタスクにおいて顕著な進歩をもたらした。
常識推論や算術的質問答えのような客観的なタスクとは違い、主観的タスクにおけるLLMのパフォーマンスは依然として限定的であり、特定の問題に対する視点は文脈をよりよく解釈し、適切な応答を与えるために重要な役割を担っている。
例えば、あるシナリオでは、LLMは専門家の役割の観点から答え、関連するドメイン知識を引き出すときに、より良く機能します。
対照的に、あるシナリオでは、LLMは第三者の立場から答えるときにより正確な応答を提供し、問題をより包括的に理解し、固有のバイアスを軽減することができる。
本稿では,LLMが直接的,役割的,第三者的視点を動的に選択し,対応する主観的問題を解き明かす手法であるRPT(Reasoning through Perspective Transition)を提案する。
GPT-4, GPT-3.5, Llama-3, Qwen-2 などのオープンソース LLM とオープンソース LLM を併用した, 完全 12 の主観的タスクに関する広範な実験を通じて, チェーン・オブ・プリート・プロンプトやエキスパート・プロンプトなど, 広く使用されている単一の固定的視点に基づく手法よりも優れており, LLM がそれぞれの視点に適応し, 異なる問題に対するニュアンスかつ文脈的に適切な応答を提供するための複雑な方法を強調している。
関連論文リスト
- Do LLMs Understand Ambiguity in Text? A Case Study in Open-world Question Answering [15.342415325821063]
自然言語の曖昧さは、オープンドメインの質問応答に使用される大規模言語モデル(LLM)に重大な課題をもたらす。
我々は,明示的曖昧化戦略の効果を計測することに集中して,市販のLLM性能と数発のLLM性能を比較した。
本研究では, 難解な問合せタスクにおいて, LLM性能を向上させるために, 簡単な, トレーニング不要, トークンレベルの曖昧さを効果的に活用できることを実証する。
論文 参考訳(メタデータ) (2024-11-19T10:27:26Z) - Q*: Improving Multi-step Reasoning for LLMs with Deliberative Planning [53.6472920229013]
大規模言語モデル(LLM)は多くの自然言語タスクにおいて印象的な能力を示している。
LLMは多段階推論を行う際にエラー、幻覚、矛盾する文を生成する傾向がある。
本稿では,LLMの復号化過程を検討計画で導くためのフレームワークであるQ*を紹介する。
論文 参考訳(メタデータ) (2024-06-20T13:08:09Z) - Meta Reasoning for Large Language Models [58.87183757029041]
大規模言語モデル(LLM)の新規かつ効率的なシステムプロセッシング手法であるメタ推論プロンプト(MRP)を導入する。
MRPは、各タスクの特定の要求に基づいて異なる推論メソッドを動的に選択し、適用するようLLMに誘導する。
総合的なベンチマークによりMPPの有効性を評価する。
論文 参考訳(メタデータ) (2024-06-17T16:14:11Z) - FAC$^2$E: Better Understanding Large Language Model Capabilities by Dissociating Language and Cognition [56.76951887823882]
大規模言語モデル(LLM)は、主に様々なテキスト理解および生成タスクにおける全体的なパフォーマンスによって評価される。
FAC$2$E, FAC$2$Eについて述べる。
論文 参考訳(メタデータ) (2024-02-29T21:05:37Z) - Rethinking Interpretability in the Era of Large Language Models [76.1947554386879]
大規模言語モデル(LLM)は、幅広いタスクにまたがる顕著な機能を示している。
自然言語で説明できる能力により、LLMは人間に与えられるパターンのスケールと複雑さを拡大することができる。
これらの新しい機能は、幻覚的な説明や膨大な計算コストなど、新しい課題を提起する。
論文 参考訳(メタデータ) (2024-01-30T17:38:54Z) - From Understanding to Utilization: A Survey on Explainability for Large
Language Models [27.295767173801426]
この調査は、Large Language Models (LLMs) における説明可能性の向上を示唆している。
主に、トレーニング済みの Transformer ベースの LLM に重点を置いています。
説明可能性の活用を考える際に、モデル編集、制御生成、モデル拡張に集中するいくつかの魅力的な方法を検討する。
論文 参考訳(メタデータ) (2024-01-23T16:09:53Z) - Predicting challenge moments from students' discourse: A comparison of
GPT-4 to two traditional natural language processing approaches [0.3826704341650507]
本研究では,3つの異なる自然言語処理モデルを活用する可能性について検討する。
専門知識ルールベースモデル,教師付き機械学習モデル,言語モデル(LLM)について検討した。
その結果,教師付きMLとLLMのアプローチは両タスクとも良好に動作したことがわかった。
論文 参考訳(メタデータ) (2024-01-03T11:54:30Z) - Improving Open Information Extraction with Large Language Models: A
Study on Demonstration Uncertainty [52.72790059506241]
オープン情報抽出(OIE)タスクは、構造化されていないテキストから構造化された事実を抽出することを目的としている。
一般的なタスク解決手段としてChatGPTのような大きな言語モデル(LLM)の可能性にもかかわらず、OIEタスクの最先端(教師付き)メソッドは遅れている。
論文 参考訳(メタデータ) (2023-09-07T01:35:24Z) - Prompting Large Language Models for Counterfactual Generation: An
Empirical Study [13.506528217009507]
大規模言語モデル(LLM)は、幅広い自然言語理解と生成タスクにおいて顕著な進歩を遂げている。
本稿では,様々な種類のNLUタスクに対する総合的な評価フレームワークを提案する。
論文 参考訳(メタデータ) (2023-05-24T06:44:32Z) - Introspective Tips: Large Language Model for In-Context Decision Making [48.96711664648164]
我々は,大規模言語モデル(LLM)の自己最適化を促進するために,イントロスペクティブティップス(Introspective Tips)を採用している。
本手法は,少数ショットとゼロショットの両方の学習状況において,エージェントの性能を向上させる。
TextWorldにおける100以上のゲームに関する実験は、我々のアプローチの優れたパフォーマンスを示している。
論文 参考訳(メタデータ) (2023-05-19T11:20:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。