論文の概要: Distribution-Free Matrix Prediction Under Arbitrary Missing Pattern
- arxiv url: http://arxiv.org/abs/2305.11640v1
- Date: Fri, 19 May 2023 12:44:34 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-22 14:26:35.607813
- Title: Distribution-Free Matrix Prediction Under Arbitrary Missing Pattern
- Title(参考訳): 任意欠落パターンによる分布フリー行列予測
- Authors: Meijia Shao and Yuan Zhang
- Abstract要約: 行/列交換可能な行列における共形入力予測の解問題について検討する。
この問題に対処する2つの実用的なアルゴリズムを提案する。
- 参考スコア(独自算出の注目度): 7.18943611755107
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: This paper studies the open problem of conformalized entry prediction in a
row/column-exchangeable matrix. The matrix setting presents novel and unique
challenges, but there exists little work on this interesting topic. We
meticulously define the problem, differentiate it from closely related
problems, and rigorously delineate the boundary between achievable and
impossible goals. We then propose two practical algorithms. The first method
provides a fast emulation of the full conformal prediction, while the second
method leverages the technique of algorithmic stability for acceleration. Both
methods are computationally efficient and can effectively safeguard coverage
validity in presence of arbitrary missing pattern. Further, we quantify the
impact of missingness on prediction accuracy and establish fundamental limit
results. Empirical evidence from synthetic and real-world data sets
corroborates the superior performance of our proposed methods.
- Abstract(参考訳): 本稿では,行/列交換行列における共形入力予測の開放問題について検討する。
行列設定は新規でユニークな課題を提示するが、この興味深いトピックについてはほとんど研究されていない。
問題を慎重に定義し、密接に関連する問題と区別し、達成可能な目標と不可能な目標の境界を厳格に定義する。
次に2つの実用的なアルゴリズムを提案する。
第1の手法は完全共形予測の高速エミュレーションを提供し,第2の手法は加速度のアルゴリズム安定性を利用する。
どちらの手法も計算効率が良く、任意の欠落パターンが存在する場合のカバレッジの有効性を効果的に保護することができる。
さらに、欠落が予測精度に与える影響を定量化し、基礎的限界結果を確立する。
合成および実世界のデータセットによる実証的証拠は,提案手法の優れた性能を裏付けるものである。
関連論文リスト
- Trust-Region Sequential Quadratic Programming for Stochastic Optimization with Random Models [57.52124921268249]
本稿では,1次と2次の両方の定常点を見つけるための信頼逐次準計画法を提案する。
本手法は, 1次定常点に収束するため, 対象対象の近似を最小化して定義された各イテレーションの勾配ステップを計算する。
2階定常点に収束するため,本手法は負曲率を減少するヘッセン行列を探索する固有ステップも計算する。
論文 参考訳(メタデータ) (2024-09-24T04:39:47Z) - Discretize Relaxed Solution of Spectral Clustering via a Non-Heuristic
Algorithm [77.53604156112144]
我々は、元の問題と離散化アルゴリズムを橋渡しする1次項を開発する。
非ヒューリスティック法は元のグラフ切断問題を認識しているため、最終的な離散解の方が信頼性が高い。
論文 参考訳(メタデータ) (2023-10-19T13:57:38Z) - Zero-Regret Performative Prediction Under Inequality Constraints [5.513958040574729]
本稿では不等式制約下での性能予測について検討する。
我々は,ある程度の精度しか必要としない頑健な原始双対フレームワークを開発する。
次に、位置ファミリに対する適応的原始双対アルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-09-22T04:54:26Z) - Geometry-Aware Approaches for Balancing Performance and Theoretical
Guarantees in Linear Bandits [6.907555940790131]
トンプソンサンプリングとグリーディは有望な経験的性能を示したが、これは悲観的な理論的後悔の境界とは対照的である。
本研究では不確実楕円体の幾何学的特性を追跡する新しいデータ駆動手法を提案する。
ベースアルゴリズムが不十分な問題インスタンスを特定し,コース修正する。
論文 参考訳(メタデータ) (2023-06-26T17:38:45Z) - dugMatting: Decomposed-Uncertainty-Guided Matting [83.71273621169404]
そこで本稿では, 明確に分解された不確かさを探索し, 効率よく効率よく改善する, 分解不確実性誘導型マッチングアルゴリズムを提案する。
提案したマッチングフレームワークは,シンプルで効率的なラベリングを用いて対話領域を決定する必要性を緩和する。
論文 参考訳(メタデータ) (2023-06-02T11:19:50Z) - A New Inexact Proximal Linear Algorithm with Adaptive Stopping Criteria
for Robust Phase Retrieval [6.407536646154451]
本稿では,非平滑かつ非最適化問題であるロバスト検索問題を考察する。
本稿では,2つのコントリビューションでサブプロブレムを解くことを目的とした,新しい不正確な近位線形アルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-04-25T02:29:33Z) - Scalable Bayesian Meta-Learning through Generalized Implicit Gradients [64.21628447579772]
Inlicit Bayesian Meta-learning (iBaML) 法は、学習可能な事前のスコープを広げるだけでなく、関連する不確実性も定量化する。
解析誤差境界は、明示的よりも一般化された暗黙的勾配の精度と効率を示すために確立される。
論文 参考訳(メタデータ) (2023-03-31T02:10:30Z) - Efficient and Differentiable Conformal Prediction with General Function
Classes [96.74055810115456]
本稿では,複数の学習可能なパラメータに対する共形予測の一般化を提案する。
本研究は, クラス内において, ほぼ有効な人口被覆率, ほぼ最適効率を実現していることを示す。
実験の結果,提案アルゴリズムは有効な予測セットを学習し,効率を著しく向上できることがわかった。
論文 参考訳(メタデータ) (2022-02-22T18:37:23Z) - Efficient First-Order Contextual Bandits: Prediction, Allocation, and
Triangular Discrimination [82.52105963476703]
統計的学習、オンライン学習、その他における繰り返しのテーマは、低騒音の問題に対してより速い収束率が可能であることである。
1次保証は統計的およびオンライン学習において比較的よく理解されている。
三角識別と呼ばれる対数損失と情報理論量が一階保証を得る上で基本的な役割を担っていることを示す。
論文 参考訳(メタデータ) (2021-07-05T19:20:34Z) - Proximal Causal Learning with Kernels: Two-Stage Estimation and Moment
Restriction [39.51144507601913]
我々は近位因果学習の設定に焦点をあてるが、本手法はフレドホルム積分方程式によって特徴づけられるより広い逆問題のクラスを解くのに使うことができる。
我々は,各アルゴリズムに一貫性の保証を提供し,これらの手法が合成データと実世界のタスクをシミュレートしたデータにおいて競争的な結果をもたらすことを示す。
論文 参考訳(メタデータ) (2021-05-10T17:52:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。