Single-photon source over the terahertz regime
- URL: http://arxiv.org/abs/2305.11754v3
- Date: Thu, 19 Oct 2023 10:24:29 GMT
- Title: Single-photon source over the terahertz regime
- Authors: Caspar Groiseau, Antonio I. Fern\'andez-Dom\'inguez, Diego
Mart\'in-Cano and Carlos S\'anchez Mu\~noz
- Abstract summary: We present a proposal for a tunable source of single photons operating in the terahertz (THz) regime.
This scheme transforms incident visible photons into quantum THz radiation by driving a single polar quantum emitter with an optical laser.
We show that the implementation of this proposal is feasible with state-of-the-art photonics technology.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a proposal for a tunable source of single photons operating in the
terahertz (THz) regime. This scheme transforms incident visible photons into
quantum THz radiation by driving a single polar quantum emitter with an optical
laser, with its permanent dipole enabling dressed THz transitions enhanced by
the resonant coupling to a cavity. This mechanism offers optical tunability of
properties such as the frequency of the emission or its quantum statistics
(ranging from antibunching to entangled multi-photon states) by modifying the
intensity and frequency of the drive. We show that the implementation of this
proposal is feasible with state-of-the-art photonics technology.
Related papers
- Multi-phonon Fock state heralding with single-photon detection [0.0]
We show how single-photon detection can herald selected multi-phonon Fock states, even in the presence of optical losses.
We also present an approach for quantum tomography of the heralded phonon states.
arXiv Detail & Related papers (2024-07-26T22:51:53Z) - Coherent Control of an Optical Quantum Dot Using Phonons and Photons [5.1635749330879905]
We describe unique features and advantages of optical two-level systems, or qubits, for optomechanics.
The qubit state can be coherently controlled using both phonons and resonant or detuned photons.
Time-correlated single-photon counting measurements reveal the control of QD population dynamics.
arXiv Detail & Related papers (2024-04-02T16:25:35Z) - Band Gap Engineering and Controlling Transport Properties of Single
Photons in Periodic and Disordered Jaynes-Cummings Arrays [0.0]
We study the single photon transport properties in periodic and position-disordered Jaynes-Cummings arrays.
In the disordered case, we find that the single photon transmission curves show the disappearance of band formation.
The results of this work may find application in the study of quantum many-body effects in the optical domain.
arXiv Detail & Related papers (2024-01-26T22:32:21Z) - All-optical modulation with single-photons using electron avalanche [69.65384453064829]
We demonstrate all-optical modulation using a beam with single-photon intensity.
Our approach opens up the possibility of terahertz-speed optical switching at the single-photon level.
arXiv Detail & Related papers (2023-12-18T20:14:15Z) - Generation and characterization of polarization-entangled states using
quantum dot single-photon sources [0.0]
Single-photon sources based on semiconductor quantum dots find several applications in quantum information processing.
We implement this approach via a simple and compact design that generates entangled photon pairs in the polarization degree of freedom.
Our source shows long-term stability and high quality of the generated entangled states, thus constituting a reliable building block for optical quantum technologies.
arXiv Detail & Related papers (2023-08-04T16:07:12Z) - Resonant Parametric Photon Generation in Waveguide-coupled Quantum Emitter Arrays [83.88591755871734]
We have developed a theory of parametric photon generation in the waveguides coupled to arrays of quantum emitters with temporally modulated resonance frequencies.
Such generation can be interpreted as a dynamical Casimir effect.
We demonstrate numerically and analytically how the emission directionality and photon-photon correlations can be controlled by the phases of the modulation.
arXiv Detail & Related papers (2023-02-24T18:07:49Z) - Ultra-long photonic quantum walks via spin-orbit metasurfaces [52.77024349608834]
We report ultra-long photonic quantum walks across several hundred optical modes, obtained by propagating a light beam through very few closely-stacked liquid-crystal metasurfaces.
With this setup we engineer quantum walks up to 320 discrete steps, far beyond state-of-the-art experiments.
arXiv Detail & Related papers (2022-03-28T19:37:08Z) - Spectrally-modified frequency-swept pulses for optically-driven quantum
light sources [0.0]
We present a driving scheme for solid-state quantum emitters using frequency-swept pulses containing a spectral hole resonant with the optical transition in the emitter.
Our scheme enables high-fidelity state inversion, exhibits robustness to variations in the laser pulse parameters and is immune to phonon-mediated excitation-induced dephasing.
arXiv Detail & Related papers (2022-03-02T19:59:43Z) - Superradiance in dynamically modulated Tavis-Cumming model with spectral
disorder [62.997667081978825]
Superradiance is the enhanced emission of photons from quantum emitters collectively coupling to the same optical mode.
We study the interplay between superradiance and spectral disorder in a dynamically modulated Tavis-Cummings model.
arXiv Detail & Related papers (2021-08-18T21:29:32Z) - Optical repumping of resonantly excited quantum emitters in hexagonal
boron nitride [52.77024349608834]
We present an optical co-excitation scheme which uses a weak non-resonant laser to reduce transitions to a dark state and amplify the photoluminescence from quantum emitters in hexagonal boron nitride (hBN)
Our results are important for the deployment of atom-like defects in hBN as reliable building blocks for quantum photonic applications.
arXiv Detail & Related papers (2020-09-11T10:15:22Z) - Hyperentanglement in structured quantum light [50.591267188664666]
Entanglement in high-dimensional quantum systems, where one or more degrees of freedom of light are involved, offers increased information capacities and enables new quantum protocols.
Here, we demonstrate a functional source of high-dimensional, noise-resilient hyperentangled states encoded in time-frequency and vector-vortex structured modes.
We generate highly entangled photon pairs at telecom wavelength that we characterise via two-photon interference and quantum state tomography, achieving near-unity visibilities and fidelities.
arXiv Detail & Related papers (2020-06-02T18:00:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.