The Inside Story: Towards Better Understanding of Machine Translation
Neural Evaluation Metrics
- URL: http://arxiv.org/abs/2305.11806v1
- Date: Fri, 19 May 2023 16:42:17 GMT
- Title: The Inside Story: Towards Better Understanding of Machine Translation
Neural Evaluation Metrics
- Authors: Ricardo Rei, Nuno M. Guerreiro, Marcos Treviso, Luisa Coheur, Alon
Lavie and Andr\'e F.T. Martins
- Abstract summary: We develop and compare several neural explainability methods and demonstrate their effectiveness for interpreting state-of-the-art fine-tuned neural metrics.
Our study reveals that these metrics leverage token-level information that can be directly attributed to translation errors.
- Score: 8.432864879027724
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Neural metrics for machine translation evaluation, such as COMET, exhibit
significant improvements in their correlation with human judgments, as compared
to traditional metrics based on lexical overlap, such as BLEU. Yet, neural
metrics are, to a great extent, "black boxes" returning a single sentence-level
score without transparency about the decision-making process. In this work, we
develop and compare several neural explainability methods and demonstrate their
effectiveness for interpreting state-of-the-art fine-tuned neural metrics. Our
study reveals that these metrics leverage token-level information that can be
directly attributed to translation errors, as assessed through comparison of
token-level neural saliency maps with Multidimensional Quality Metrics (MQM)
annotations and with synthetically-generated critical translation errors. To
ease future research, we release our code at:
https://github.com/Unbabel/COMET/tree/explainable-metrics.
Related papers
- An Empirical Study on the Robustness of Massively Multilingual Neural Machine Translation [40.08063412966712]
Massively multilingual neural machine translation (MMNMT) has been proven to enhance the translation quality of low-resource languages.
We create a robustness evaluation benchmark dataset for Indonesian-Chinese translation.
This dataset is automatically translated into Chinese using four NLLB-200 models of different sizes.
arXiv Detail & Related papers (2024-05-13T12:01:54Z) - Towards Multiple References Era -- Addressing Data Leakage and Limited
Reference Diversity in NLG Evaluation [55.92852268168816]
N-gram matching-based evaluation metrics, such as BLEU and chrF, are widely utilized across a range of natural language generation (NLG) tasks.
Recent studies have revealed a weak correlation between these matching-based metrics and human evaluations.
We propose to utilize textitmultiple references to enhance the consistency between these metrics and human evaluations.
arXiv Detail & Related papers (2023-08-06T14:49:26Z) - BLEURT Has Universal Translations: An Analysis of Automatic Metrics by
Minimum Risk Training [64.37683359609308]
In this study, we analyze various mainstream and cutting-edge automatic metrics from the perspective of their guidance for training machine translation systems.
We find that certain metrics exhibit robustness defects, such as the presence of universal adversarial translations in BLEURT and BARTScore.
In-depth analysis suggests two main causes of these robustness deficits: distribution biases in the training datasets, and the tendency of the metric paradigm.
arXiv Detail & Related papers (2023-07-06T16:59:30Z) - BLEU Meets COMET: Combining Lexical and Neural Metrics Towards Robust
Machine Translation Evaluation [12.407789866525079]
We show that by using additional information during training, such as sentence-level features and word-level tags, the trained metrics improve their capability to penalize translations with specific troublesome phenomena.
We show that by using additional information during training, such as sentence-level features and word-level tags, the trained metrics improve their capability to penalize translations with specific troublesome phenomena.
arXiv Detail & Related papers (2023-05-30T15:50:46Z) - HanoiT: Enhancing Context-aware Translation via Selective Context [95.93730812799798]
Context-aware neural machine translation aims to use the document-level context to improve translation quality.
The irrelevant or trivial words may bring some noise and distract the model from learning the relationship between the current sentence and the auxiliary context.
We propose a novel end-to-end encoder-decoder model with a layer-wise selection mechanism to sift and refine the long document context.
arXiv Detail & Related papers (2023-01-17T12:07:13Z) - Competency-Aware Neural Machine Translation: Can Machine Translation
Know its Own Translation Quality? [61.866103154161884]
Neural machine translation (NMT) is often criticized for failures that happen without awareness.
We propose a novel competency-aware NMT by extending conventional NMT with a self-estimator.
We show that the proposed method delivers outstanding performance on quality estimation.
arXiv Detail & Related papers (2022-11-25T02:39:41Z) - DEMETR: Diagnosing Evaluation Metrics for Translation [21.25704103403547]
We release DEMETR, a diagnostic dataset with 31K English examples.
We find that learned metrics perform substantially better than string-based metrics on DEMETR.
arXiv Detail & Related papers (2022-10-25T03:25:44Z) - Minimum Bayes Risk Decoding with Neural Metrics of Translation Quality [16.838064121696274]
This work applies Minimum Bayes Risk decoding to optimize diverse automated metrics of translation quality.
Experiments show that the combination of a neural translation model with a neural reference-based metric, BLEURT, results in significant improvement in automatic and human evaluations.
arXiv Detail & Related papers (2021-11-17T20:48:02Z) - It's Easier to Translate out of English than into it: Measuring Neural
Translation Difficulty by Cross-Mutual Information [90.35685796083563]
Cross-mutual information (XMI) is an asymmetric information-theoretic metric of machine translation difficulty.
XMI exploits the probabilistic nature of most neural machine translation models.
We present the first systematic and controlled study of cross-lingual translation difficulties using modern neural translation systems.
arXiv Detail & Related papers (2020-05-05T17:38:48Z) - On the Limitations of Cross-lingual Encoders as Exposed by
Reference-Free Machine Translation Evaluation [55.02832094101173]
Evaluation of cross-lingual encoders is usually performed either via zero-shot cross-lingual transfer in supervised downstream tasks or via unsupervised cross-lingual similarity.
This paper concerns ourselves with reference-free machine translation (MT) evaluation where we directly compare source texts to (sometimes low-quality) system translations.
We systematically investigate a range of metrics based on state-of-the-art cross-lingual semantic representations obtained with pretrained M-BERT and LASER.
We find that they perform poorly as semantic encoders for reference-free MT evaluation and identify their two key limitations.
arXiv Detail & Related papers (2020-05-03T22:10:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.