Foldy-Wouthuysen transformation and multiwave states of a graphene
electron in external fields and free (2+1)-space
- URL: http://arxiv.org/abs/2305.11879v1
- Date: Sun, 7 May 2023 17:03:00 GMT
- Title: Foldy-Wouthuysen transformation and multiwave states of a graphene
electron in external fields and free (2+1)-space
- Authors: Alexander J. Silenko
- Abstract summary: Graphene electrons in a static electric field can exist in the multiwave Hermite-Gauss states defining non-spreading coherent beams.
It is proven that the Hermite-Gauss beams exist even in the free space.
- Score: 91.3755431537592
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The relativistic Foldy-Wouthuysen transformation is used for an advanced
description of planar graphene electrons in external fields and free
(2+1)-space. It is shown that the initial Dirac equation should contain usual
Dirac matrices but not the Pauli ones. The spin of graphene electrons is not
the isotopic spin and takes the values $\pm1/2$. The exact Foldy-Wouthuysen
Hamiltonian of a graphene electron in uniform and nonuniform magnetic fields is
derived. The exact energy spectrum agreeing with experimental data and exact
Foldy-Wouthuysen wave eigenfunctions are obtained. These eigenfunctions
describe multiwave (structured) states in (2+1)-space. It is proven that the
Hermite-Gauss beams exist even in the free space. In the multiwave
Hermite-Gauss states, graphene electrons acquire nonzero effective masses
dependent on a quantum number and move with group velocities which are less
than the Fermi velocity. Graphene electrons in a static electric field also can
exist in the multiwave Hermite-Gauss states defining non-spreading coherent
beams. These beams can be accelerated and decelerated.
Related papers
- Massive Dirac particles based on gapped graphene with Rosen-Morse potential in a uniform magnetic field [0.0]
We explore the gapped graphene structure in the two-dimensional plane in the presence of the Rosen-Morse potential and an external uniform magnetic field.
We analyze it by the wave functions of two-component spinors with pseudo-spin symmetry using the Dirac equation.
Finally, the energy bands are plotted in terms of the wave vectors $K_x$ and $K_y$ with and without the magnetic term.
arXiv Detail & Related papers (2024-08-30T19:52:19Z) - Spin Current Density Functional Theory of the Quantum Spin-Hall Phase [59.50307752165016]
We apply the spin current density functional theory to the quantum spin-Hall phase.
We show that the explicit account of spin currents in the electron-electron potential of the SCDFT is key to the appearance of a Dirac cone.
arXiv Detail & Related papers (2022-08-29T20:46:26Z) - Electron Wave Spin in a Quantum Well [0.0]
We show that a stable circulating total current density exists inside the well with a donut shaped topography.
A spin value is modified by the confining geometry of the well.
A free electron Gaussian wavepacket is unstable and experiences quick decoherence.
arXiv Detail & Related papers (2022-03-17T16:50:36Z) - New Class of Landau Levels and Hall Phases in a 2D Electron Gas Subject
to an Inhomogeneous Magnetic Field: An Analytic Solution [0.0]
Solution provides access to many properties of a two-dimensional, non-interacting, electron gas in the thermodynamic limit.
Radially distorted Landau levels can be identified as well as magnetic field induced density and current oscillations close to the magnetic impurity.
arXiv Detail & Related papers (2022-01-13T16:52:02Z) - Band strutures of hybrid graphene quantum dots with magnetic flux [0.0]
We study the band structures of hybrid graphene quantum dots subject to a magnetic flux and electrostatic potential.
For the valley $K'$, it is found that the magnetic flux strongly acts by decreasing the gap and shifting energy levels away from zero radius with some oscillations.
arXiv Detail & Related papers (2021-07-30T12:04:13Z) - Relativistic aspects of orbital and magnetic anisotropies in the
chemical bonding and structure of lanthanide molecules [60.17174832243075]
We study the electronic and ro-vibrational states of heavy homonuclear lanthanide Er2 and Tm2 molecules by applying state-of-the-art relativistic methods.
We were able to obtain reliable spin-orbit and correlation-induced splittings between the 91 Er2 and 36 Tm2 electronic potentials dissociating to two ground-state atoms.
arXiv Detail & Related papers (2021-07-06T15:34:00Z) - Motion-induced radiation due to an atom in the presence of a graphene
plane [62.997667081978825]
We study the motion-induced radiation due to the non-relativistic motion of an atom in the presence of a static graphene plate.
We show that the effect of the plate is to increase the probability of emission when the atom is near the plate and oscillates along a direction perpendicular to it.
arXiv Detail & Related papers (2021-04-15T14:15:23Z) - Energy spectrum of massive Dirac particles in gapped graphene with Morse
potential [0.0]
We study the massive Dirac equation with the presence of the Morse potential in polar coordinate.
The Dirac Hamiltonian is written as two second-order differential equations in terms of two spinor wavefunctions.
We investigate the graphene band structure by a linear dispersion relation which creates an energy gap in the Dirac points called gapped graphene.
arXiv Detail & Related papers (2021-04-14T09:26:56Z) - Electrically tuned hyperfine spectrum in neutral
Tb(II)(Cp$^{\rm{iPr5}}$)$_2$ single-molecule magnet [64.10537606150362]
Both molecular electronic and nuclear spin levels can be used as qubits.
In solid state systems with dopants, an electric field was shown to effectively change the spacing between the nuclear spin qubit levels.
This hyperfine Stark effect may be useful for applications of molecular nuclear spins for quantum computing.
arXiv Detail & Related papers (2020-07-31T01:48:57Z) - General quantum-mechanical solution for twisted electrons in a uniform
magnetic field [68.8204255655161]
A theory of twisted (and other structured) paraxial electrons in a uniform magnetic field is developed.
The observable effect of a different behavior of relativistic Laguerre-Gauss beams with opposite directions of the orbital angular momentum penetrating from the free space into a magnetic field is predicted.
arXiv Detail & Related papers (2020-05-13T16:35:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.