論文の概要: Deep Learning Approaches to Lexical Simplification: A Survey
- arxiv url: http://arxiv.org/abs/2305.12000v1
- Date: Fri, 19 May 2023 20:56:22 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-24 01:23:53.401595
- Title: Deep Learning Approaches to Lexical Simplification: A Survey
- Title(参考訳): 語彙的単純化への深層学習アプローチ:サーベイ
- Authors: Kai North, Tharindu Ranasinghe, Matthew Shardlow, Marcos Zampieri
- Abstract要約: レキシカルシンプリフィケーション(Lexical Simplification、LS)は、複合語を文中の単純な単語に置き換える作業である。
LS は Text Simplification (TS) の語彙的構成要素である
近年のディープラーニングの進歩は、LSに新たな関心を喚起している。
- 参考スコア(独自算出の注目度): 19.079916794185642
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Lexical Simplification (LS) is the task of replacing complex for simpler
words in a sentence whilst preserving the sentence's original meaning. LS is
the lexical component of Text Simplification (TS) with the aim of making texts
more accessible to various target populations. A past survey (Paetzold and
Specia, 2017) has provided a detailed overview of LS. Since this survey,
however, the AI/NLP community has been taken by storm by recent advances in
deep learning, particularly with the introduction of large language models
(LLM) and prompt learning. The high performance of these models sparked renewed
interest in LS. To reflect these recent advances, we present a comprehensive
survey of papers published between 2017 and 2023 on LS and its sub-tasks with a
special focus on deep learning. We also present benchmark datasets for the
future development of LS systems.
- Abstract(参考訳): レキシカルシンプリフィケーション(Lexical Simplification、LS)は、文の本来の意味を保ちながら、文中のより単純な単語に置き換えるタスクである。
LSはテキスト単純化(Text Simplification, TS)の語彙的構成要素であり、テキストを様々なターゲット層によりアクセスしやすくすることを目的としている。
過去の調査(Paetzold and Specia, 2017)では、LSの概要が詳細に説明されている。
しかし、この調査以降、AI/NLPコミュニティは、特に大規模言語モデル(LLM)の導入と迅速な学習によって、近年のディープラーニングの進歩によって、嵐に浴びている。
これらのモデルの高性能化はlsへの関心を再び高めた。
近年の進歩を振り返って、2017年から2023年にかけて発表されたlsとそのサブタスクに関する論文の包括的調査を行い、深層学習に特化している。
また,今後のLSシステム開発のためのベンチマークデータセットも提示する。
関連論文リスト
- Scaling Up Summarization: Leveraging Large Language Models for Long Text Extractive Summarization [0.27624021966289597]
本稿では,Large Language Models (LLM) を利用した抽出要約フレームワークであるEYEGLAXSを紹介する。
EYEGLAXSは、事実的および文法的整合性を保証するために抽出的な要約に焦点を当てている。
このシステムはPubMedやArXivといった有名なデータセットに新しいパフォーマンスベンチマークを設定する。
論文 参考訳(メタデータ) (2024-08-28T13:52:19Z) - MultiLS: A Multi-task Lexical Simplification Framework [21.81108113189197]
マルチタスクLSデータセットの作成を可能にする最初のLSフレームワークであるMultiLSを提案する。
また,MultiLSフレームワークを用いた最初のデータセットであるMultiLS-PTを提案する。
論文 参考訳(メタデータ) (2024-02-22T21:16:18Z) - An LLM-Enhanced Adversarial Editing System for Lexical Simplification [10.519804917399744]
Lexical Simplificationは、語彙レベルでのテキストの簡略化を目的としている。
既存のメソッドはアノテーション付きデータに大きく依存している。
並列コーパスのない新しいLS法を提案する。
論文 参考訳(メタデータ) (2024-02-22T17:04:30Z) - The Lay Person's Guide to Biomedicine: Orchestrating Large Language
Models [38.8292168447796]
大規模言語モデル(LLM)は、テキストの単純化、背景情報生成、テキスト評価において顕著な能力を示した。
我々は,LLMを利用して高品質なバックグラウンド知識を生成する,新しいtextitExplain-then-Summarise LSフレームワークを提案する。
また,複数の視点からレイネスを評価する2つの新しいLS評価指標を提案する。
論文 参考訳(メタデータ) (2024-02-21T03:21:14Z) - Large Language Models: A Survey [69.72787936480394]
大規模言語モデル(LLM)は、広範囲の自然言語タスクにおける強力なパフォーマンスのために、多くの注目を集めている。
LLMの汎用言語理解と生成能力は、膨大なテキストデータに基づいて数十億のモデルのパラメータを訓練することで得られる。
論文 参考訳(メタデータ) (2024-02-09T05:37:09Z) - Rethinking Interpretability in the Era of Large Language Models [76.1947554386879]
大規模言語モデル(LLM)は、幅広いタスクにまたがる顕著な機能を示している。
自然言語で説明できる能力により、LLMは人間に与えられるパターンのスケールと複雑さを拡大することができる。
これらの新しい機能は、幻覚的な説明や膨大な計算コストなど、新しい課題を提起する。
論文 参考訳(メタデータ) (2024-01-30T17:38:54Z) - Supervised Knowledge Makes Large Language Models Better In-context Learners [94.89301696512776]
大規模言語モデル(LLM)は、素早い工学を通して、文脈内学習能力の出現を示す。
自然言語理解と質問応答におけるLLMの一般化性と事実性の向上という課題は、まだ未解決のままである。
本研究では, LLM の信頼性を高める枠組みを提案する。1) 分布外データの一般化,2) 差別モデルによる LLM のメリットの解明,3) 生成タスクにおける幻覚の最小化。
論文 参考訳(メタデータ) (2023-12-26T07:24:46Z) - Evaluating, Understanding, and Improving Constrained Text Generation for Large Language Models [49.74036826946397]
本研究では,大言語モデル(LLM)の制約付きテキスト生成について検討する。
本研究は主に,制約を語彙型,構造型,関係型に分類するオープンソース LLM に重点を置いている。
その結果、LLMの能力と不足を照らし、制約を取り入れ、制約付きテキスト生成における将来の発展に対する洞察を提供する。
論文 参考訳(メタデータ) (2023-10-25T03:58:49Z) - Harnessing Explanations: LLM-to-LM Interpreter for Enhanced
Text-Attributed Graph Representation Learning [51.90524745663737]
重要なイノベーションは、機能として説明を使用することで、下流タスクにおけるGNNのパフォーマンス向上に利用できます。
提案手法は、確立されたTAGデータセットの最先端結果を実現する。
本手法はトレーニングを著しく高速化し,ogbn-arxivのベースラインに最も近い2.88倍の改善を実現した。
論文 参考訳(メタデータ) (2023-05-31T03:18:03Z) - ALEXSIS-PT: A New Resource for Portuguese Lexical Simplification [17.101023503289856]
ALEXSIS-PTは、387の複雑な単語に対する9,605の候補置換を含むブラジルポルトガル語LSのための新しい多候補データセットである。
本データセットでは,mDistilBERT,mBERT,XLM-R,BERTimbauの4つの代用生成モデルを評価する。
論文 参考訳(メタデータ) (2022-09-19T14:10:21Z) - Shortcut Learning of Large Language Models in Natural Language
Understanding [119.45683008451698]
大規模言語モデル(LLM)は、一連の自然言語理解タスクにおいて最先端のパフォーマンスを達成した。
予測のショートカットとしてデータセットのバイアスやアーティファクトに依存するかも知れません。
これは、その一般化性と敵対的堅牢性に大きな影響を与えている。
論文 参考訳(メタデータ) (2022-08-25T03:51:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。