論文の概要: An LLM-Enhanced Adversarial Editing System for Lexical Simplification
- arxiv url: http://arxiv.org/abs/2402.14704v3
- Date: Fri, 22 Mar 2024 06:45:51 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-25 22:01:03.126274
- Title: An LLM-Enhanced Adversarial Editing System for Lexical Simplification
- Title(参考訳): 語彙単純化のためのLLM強化逆編集システム
- Authors: Keren Tan, Kangyang Luo, Yunshi Lan, Zheng Yuan, Jinlong Shu,
- Abstract要約: Lexical Simplificationは、語彙レベルでのテキストの簡略化を目的としている。
既存のメソッドはアノテーション付きデータに大きく依存している。
並列コーパスのない新しいLS法を提案する。
- 参考スコア(独自算出の注目度): 10.519804917399744
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Lexical Simplification (LS) aims to simplify text at the lexical level. Existing methods rely heavily on annotated data, making it challenging to apply in low-resource scenarios. In this paper, we propose a novel LS method without parallel corpora. This method employs an Adversarial Editing System with guidance from a confusion loss and an invariance loss to predict lexical edits in the original sentences. Meanwhile, we introduce an innovative LLM-enhanced loss to enable the distillation of knowledge from Large Language Models (LLMs) into a small-size LS system. From that, complex words within sentences are masked and a Difficulty-aware Filling module is crafted to replace masked positions with simpler words. At last, extensive experimental results and analyses on three benchmark LS datasets demonstrate the effectiveness of our proposed method.
- Abstract(参考訳): Lexical Simplification (LS) は、語彙レベルでのテキストの簡略化を目的としている。
既存のメソッドはアノテーション付きデータに大きく依存しているため、低リソースのシナリオに適用することは困難である。
本稿では,並列コーパスを含まない新しいLS法を提案する。
本手法では,原文の語彙的編集を予測するために,混乱損失と不変損失から導出する逆編集システムを用いる。
一方,我々は,LLM(Large Language Models)からの知識の蒸留を小型LSシステムに導入するために,革新的なLLM強化損失を導入した。
そこから、文中の複雑な単語はマスクされ、難易度を認識したフィリングモジュールは、マスクされた位置を単純な単語で置き換えるように作られている。
最後に,3つのベンチマークLSデータセットの広範な実験結果と解析を行い,提案手法の有効性を実証した。
関連論文リスト
- Refining Sentence Embedding Model through Ranking Sentences Generation with Large Language Models [60.00178316095646]
多くのNLPタスクには文の埋め込みが不可欠であり、NLIのようなデータセットを使用して強いパフォーマンスを達成する対照的な学習方法がある。
近年の研究では、大きな言語モデル(LLM)を利用して文ペアを生成し、アノテーション依存を減らしている。
本稿では,潜在空間におけるLLMの生成方向を制御する手法を提案する。
複数のベンチマークによる実験により,本手法は文合成に要するコストを最小限に抑えつつ,新たなSOTA性能を実現することを示した。
論文 参考訳(メタデータ) (2025-02-19T12:07:53Z) - LLM-Lasso: A Robust Framework for Domain-Informed Feature Selection and Regularization [59.75242204923353]
LLM-Lassoは大規模言語モデル(LLM)を利用してラッソ回帰における特徴選択を導くフレームワークである。
LLMは各特徴に対してペナルティ因子を生成し、単純でチューニング可能なモデルを用いてラスソペナルティの重みに変換される。
LLMによりより関連づけられた特徴は、より低い罰を受け、最終モデルに保持される可能性を高める。
論文 参考訳(メタデータ) (2025-02-15T02:55:22Z) - Redefining Simplicity: Benchmarking Large Language Models from Lexical to Document Simplification [21.727596753351072]
テキスト単純化(英: Text simplification, TS)とは、テキストの複雑さを減らし、本来の意味とキー情報を保持する過程である。
既存の研究は、大きな言語モデル(LLM)が、文の単純化に関する非LLMベースの手法よりも優れていることを示しているだけである。
論文 参考訳(メタデータ) (2025-02-12T10:38:22Z) - New Evaluation Paradigm for Lexical Simplification [15.890439726439276]
Lexical Simplification (LS)法では、複雑な単語識別、代用生成、代用ランキングという3段階のパイプラインを使用する。
大規模な言語モデル(LLM)は、単一のプロンプトで文を直接単純化し、従来のパイプラインをバイパスできることがわかった。
本稿では,人間と機械の協調によるオールインワンLSデータセット構築のための新しいアノテーション手法を提案する。
論文 参考訳(メタデータ) (2025-01-25T16:31:37Z) - Building Accurate Translation-Tailored LLMs with Language Aware Instruction Tuning [57.323716555996114]
オフターゲット翻訳は、特に低リソース言語では未解決の問題である。
最近の研究は、翻訳命令の機能を強調するために高度なプロンプト戦略を設計するか、LLMの文脈内学習能力を活用している。
本研究では,LLMの命令追従能力(特に翻訳方向)を向上させるために,2段階の微調整アルゴリズムを設計する。
論文 参考訳(メタデータ) (2024-03-21T13:47:40Z) - ASETF: A Novel Method for Jailbreak Attack on LLMs through Translate Suffix Embeddings [58.82536530615557]
本稿では, 連続的な逆接接尾辞埋め込みを一貫性のある, 理解可能なテキストに変換するために, ASETF (Adversarial Suffix Embedding Translation Framework) を提案する。
本手法は,逆接接尾辞の計算時間を著しく短縮し,既存の手法よりもはるかに優れた攻撃成功率を実現する。
論文 参考訳(メタデータ) (2024-02-25T06:46:27Z) - Towards ASR Robust Spoken Language Understanding Through In-Context
Learning With Word Confusion Networks [68.79880423713597]
本稿では,トップ仮説のみに頼るのではなく,ASRシステムの格子出力を利用する手法を提案する。
音声質問応答と意図分類を網羅した文脈内学習実験により,LLMの音声書き起こしに対する弾力性について明らかにした。
論文 参考訳(メタデータ) (2024-01-05T17:58:10Z) - SeqXGPT: Sentence-Level AI-Generated Text Detection [62.3792779440284]
大規模言語モデル(LLM)を用いた文書の合成による文レベル検出の課題について紹介する。
次に,文レベルのAIGT検出機能として,ホワイトボックスLEMのログ確率リストを利用した textbfSequence textbfX (Check) textbfGPT を提案する。
論文 参考訳(メタデータ) (2023-10-13T07:18:53Z) - Sentence Simplification via Large Language Models [15.07021692249856]
文の単純化は、複雑な文を本来の意味を保ちながら、より単純な文に言い換えることを目的としている。
大規模言語モデル(LLM)は、様々な自然言語処理タスクを実行する能力を示した。
論文 参考訳(メタデータ) (2023-02-23T12:11:58Z) - Enhancing Pre-trained Language Model with Lexical Simplification [41.34550924004487]
lexical simplification (ls) は、そのような語彙の多様性を減らすための認識された方法である。
テキスト分類におけるPrLMの性能を効果的に向上する新しい手法を提案する。
論文 参考訳(メタデータ) (2020-12-30T07:49:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。