Position: Considerations for Differentially Private Learning with Large-Scale Public Pretraining
- URL: http://arxiv.org/abs/2212.06470v3
- Date: Wed, 17 Jul 2024 06:53:58 GMT
- Title: Position: Considerations for Differentially Private Learning with Large-Scale Public Pretraining
- Authors: Florian Tramèr, Gautam Kamath, Nicholas Carlini,
- Abstract summary: We question whether the use of large Web-scraped datasets should be viewed as differential-privacy-preserving.
We caution that publicizing these models pretrained on Web data as "private" could lead to harm and erode the public's trust in differential privacy as a meaningful definition of privacy.
We conclude by discussing potential paths forward for the field of private learning, as public pretraining becomes more popular and powerful.
- Score: 75.25943383604266
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The performance of differentially private machine learning can be boosted significantly by leveraging the transfer learning capabilities of non-private models pretrained on large public datasets. We critically review this approach. We primarily question whether the use of large Web-scraped datasets should be viewed as differential-privacy-preserving. We caution that publicizing these models pretrained on Web data as "private" could lead to harm and erode the public's trust in differential privacy as a meaningful definition of privacy. Beyond the privacy considerations of using public data, we further question the utility of this paradigm. We scrutinize whether existing machine learning benchmarks are appropriate for measuring the ability of pretrained models to generalize to sensitive domains, which may be poorly represented in public Web data. Finally, we notice that pretraining has been especially impactful for the largest available models -- models sufficiently large to prohibit end users running them on their own devices. Thus, deploying such models today could be a net loss for privacy, as it would require (private) data to be outsourced to a more compute-powerful third party. We conclude by discussing potential paths forward for the field of private learning, as public pretraining becomes more popular and powerful.
Related papers
- FT-PrivacyScore: Personalized Privacy Scoring Service for Machine Learning Participation [4.772368796656325]
In practice, controlled data access remains a mainstream method for protecting data privacy in many industrial and research environments.
We developed the demo prototype FT-PrivacyScore to show that it's possible to efficiently and quantitatively estimate the privacy risk of participating in a model fine-tuning task.
arXiv Detail & Related papers (2024-10-30T02:41:26Z) - Privacy Preserving Large Language Models: ChatGPT Case Study Based Vision and Framework [6.828884629694705]
This article proposes the conceptual model called PrivChatGPT, a privacy-generative model for LLMs.
PrivChatGPT consists of two main components i.e., preserving user privacy during the data curation/pre-processing together with preserving private context and the private training process for large-scale data.
arXiv Detail & Related papers (2023-10-19T06:55:13Z) - PrivacyMind: Large Language Models Can Be Contextual Privacy Protection Learners [81.571305826793]
We introduce Contextual Privacy Protection Language Models (PrivacyMind)
Our work offers a theoretical analysis for model design and benchmarks various techniques.
In particular, instruction tuning with both positive and negative examples stands out as a promising method.
arXiv Detail & Related papers (2023-10-03T22:37:01Z) - A Unified View of Differentially Private Deep Generative Modeling [60.72161965018005]
Data with privacy concerns comes with stringent regulations that frequently prohibited data access and data sharing.
Overcoming these obstacles is key for technological progress in many real-world application scenarios that involve privacy sensitive data.
Differentially private (DP) data publishing provides a compelling solution, where only a sanitized form of the data is publicly released.
arXiv Detail & Related papers (2023-09-27T14:38:16Z) - Unlocking Accuracy and Fairness in Differentially Private Image
Classification [43.53494043189235]
Differential privacy (DP) is considered the gold standard framework for privacy-preserving training.
We show that pre-trained foundation models fine-tuned with DP can achieve similar accuracy to non-private classifiers.
arXiv Detail & Related papers (2023-08-21T17:42:33Z) - Can Public Large Language Models Help Private Cross-device Federated Learning? [58.05449579773249]
We study (differentially) private federated learning (FL) of language models.
Public data has been used to improve privacy-utility trade-offs for both large and small language models.
We propose a novel distribution matching algorithm with theoretical grounding to sample public data close to private data distribution.
arXiv Detail & Related papers (2023-05-20T07:55:58Z) - Why Is Public Pretraining Necessary for Private Model Training? [50.054565310457306]
We show that pretraining on publicly available data leads to distinct gains over nonprivate settings.
We argue that the tradeoff may be a deeper loss model that requires an algorithm to go through two phases.
Guided by intuition, we provide theoretical constructions that provably demonstrate the separation between private with and without public pretraining.
arXiv Detail & Related papers (2023-02-19T05:32:20Z) - A Survey on Differential Privacy with Machine Learning and Future
Outlook [0.0]
differential privacy is used to protect machine learning models from any attacks and vulnerabilities.
This survey paper presents different differentially private machine learning algorithms categorized into two main categories.
arXiv Detail & Related papers (2022-11-19T14:20:53Z) - Mixed Differential Privacy in Computer Vision [133.68363478737058]
AdaMix is an adaptive differentially private algorithm for training deep neural network classifiers using both private and public image data.
A few-shot or even zero-shot learning baseline that ignores private data can outperform fine-tuning on a large private dataset.
arXiv Detail & Related papers (2022-03-22T06:15:43Z) - Security and Privacy Preserving Deep Learning [2.322461721824713]
Massive data collection required for deep learning presents obvious privacy issues.
Users personal, highly sensitive data such as photos and voice recordings are kept indefinitely by the companies that collect it.
Deep neural networks are susceptible to various inference attacks as they remember information about their training data.
arXiv Detail & Related papers (2020-06-23T01:53:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.