Experimental results from applying GPT-4 to an unpublished formal
language
- URL: http://arxiv.org/abs/2305.12196v1
- Date: Sat, 20 May 2023 14:00:08 GMT
- Title: Experimental results from applying GPT-4 to an unpublished formal
language
- Authors: Gregor vom Scheidt
- Abstract summary: A state-of-the-art system, GPT-4, was provided with a concise natural language specification for a previously unpublished formal system.
The system completed all tasks successfully, showed extensive domain knowledge, invented helpful new syntax and semantics, and exhibited generalization and inference abilities.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Can large language models be used to complete mathematical tasks that are
traditionally performed either manually or with the aid of theorem provers? To
answer this question, a state-of-the-art system, GPT-4, was provided with a
concise natural language specification for a previously unpublished formal
system and asked to complete a number of tasks, from stating function and type
definitions to proving simple theorems and verifying user-supplied proofs. The
system completed all tasks successfully, showed extensive domain knowledge,
invented helpful new syntax and semantics, and exhibited generalization and
inference abilities. So the answer seems to be: yes.
Related papers
- Safe: Enhancing Mathematical Reasoning in Large Language Models via Retrospective Step-aware Formal Verification [56.218970738892764]
Chain-of-Thought prompting has become the de facto method to elicit reasoning capabilities from large language models (LLMs)<n>To mitigate hallucinations in CoT that are notoriously difficult to detect, current methods operate as opaque boxes and do not provide checkable evidence for their judgments, possibly limiting their effectiveness.<n>We propose a retrospective, step-aware formal verification framework $Safe$. Rather than assigning arbitrary scores, we strive to articulate mathematical claims in formal mathematical language Lean 4 at each reasoning step and provide formal proofs to identify hallucinations.
arXiv Detail & Related papers (2025-06-05T03:16:08Z) - DeepTheorem: Advancing LLM Reasoning for Theorem Proving Through Natural Language and Reinforcement Learning [67.93945726549289]
DeepTheorem is a comprehensive informal theorem-proving framework exploiting natural language to enhance mathematical reasoning.<n>DeepTheorem includes a large-scale benchmark dataset consisting of 121K high-quality IMO-level informal theorems and proofs.<n>We devise a novel reinforcement learning strategy (RL-Zero) explicitly tailored to informal theorem proving, leveraging the verified theorem variants to incentivize robust mathematical inference.
arXiv Detail & Related papers (2025-05-29T17:59:39Z) - Alchemy: Amplifying Theorem-Proving Capability through Symbolic Mutation [71.32761934724867]
This work proposes Alchemy, a framework for data synthesis that constructs formal theorems through symbolic mutation.
For each candidate theorem in Mathlib, we identify all invocable theorems that can be used to rewrite or apply to it.
As a result, our method increases the number of theorems in Mathlib by an order of magnitude, from 110k to 6M.
arXiv Detail & Related papers (2024-10-21T08:04:21Z) - Mathematical Formalized Problem Solving and Theorem Proving in Different Fields in Lean 4 [0.0]
This paper explores the use of Large Language Models (LLMs) to generate formal proof steps and complete formalized proofs.
The goal is to determine how AI can be leveraged to assist the mathematical formalization process and improve its performance.
arXiv Detail & Related papers (2024-09-09T18:21:28Z) - Lean-STaR: Learning to Interleave Thinking and Proving [53.923617816215774]
We present Lean-STaR, a framework for training language models to produce informal thoughts prior to each step of a proof.
Lean-STaR achieves state-of-the-art results on the miniF2F-test benchmark within the Lean theorem proving environment.
arXiv Detail & Related papers (2024-07-14T01:43:07Z) - Large Language Models' Understanding of Math: Source Criticism and
Extrapolation [0.0]
We evaluate the mathematical understanding of the GPT-4 model.
It is hard to find scientific evidence suggesting GPT-4 has acquired an understanding of even basic mathematical concepts.
arXiv Detail & Related papers (2023-11-12T07:52:32Z) - A New Approach Towards Autoformalization [7.275550401145199]
Autoformalization is the task of translating natural language mathematics into a formal language that can be verified by a program.
Research paper mathematics requires large amounts of background and context.
We propose an avenue towards tackling autoformalization for research-level mathematics, by breaking the task into easier and more approachable subtasks.
arXiv Detail & Related papers (2023-10-12T00:50:24Z) - FIMO: A Challenge Formal Dataset for Automated Theorem Proving [31.695624833932577]
FIMO is designed to facilitate advanced automated theorem proving at the IMO level.
It comprises 149 formal problem statements, accompanied by both informal problem descriptions and their corresponding-based informal proofs.
arXiv Detail & Related papers (2023-09-08T12:34:28Z) - Lila: A Unified Benchmark for Mathematical Reasoning [59.97570380432861]
LILA is a unified mathematical reasoning benchmark consisting of 23 diverse tasks along four dimensions.
We construct our benchmark by extending 20 datasets benchmark by collecting task instructions and solutions in the form of Python programs.
We introduce BHASKARA, a general-purpose mathematical reasoning model trained on LILA.
arXiv Detail & Related papers (2022-10-31T17:41:26Z) - NaturalProver: Grounded Mathematical Proof Generation with Language
Models [84.2064569475095]
Theorem proving in natural mathematical language plays a central role in mathematical advances and education.
We develop NaturalProver, a language model that generates proofs by conditioning on background references.
NaturalProver is capable of proving some theorems that require short (2-6 step) proofs, and providing next-step suggestions that are rated as correct and useful over 40% of the time.
arXiv Detail & Related papers (2022-05-25T17:01:18Z) - Generative Language Modeling for Automated Theorem Proving [94.01137612934842]
This work is motivated by the possibility that a major limitation of automated theorem provers compared to humans might be addressable via generation from language models.
We present an automated prover and proof assistant, GPT-f, for the Metamath formalization language, and analyze its performance.
arXiv Detail & Related papers (2020-09-07T19:50:10Z) - Learning to Prove Theorems by Learning to Generate Theorems [71.46963489866596]
We learn a neural generator that automatically synthesizes theorems and proofs for the purpose of training a theorem prover.
Experiments on real-world tasks demonstrate that synthetic data from our approach improves the theorem prover.
arXiv Detail & Related papers (2020-02-17T16:06:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.