Learning Joint 2D & 3D Diffusion Models for Complete Molecule Generation
- URL: http://arxiv.org/abs/2305.12347v2
- Date: Sun, 4 Jun 2023 10:09:36 GMT
- Title: Learning Joint 2D & 3D Diffusion Models for Complete Molecule Generation
- Authors: Han Huang, Leilei Sun, Bowen Du, Weifeng Lv
- Abstract summary: We propose a new joint 2D and 3D diffusion model (JODO) that generates molecules with atom types, formal charges, bond information, and 3D coordinates.
Our model can also be extended for inverse molecular design targeting single or multiple quantum properties.
- Score: 32.66694406638287
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Designing new molecules is essential for drug discovery and material science.
Recently, deep generative models that aim to model molecule distribution have
made promising progress in narrowing down the chemical research space and
generating high-fidelity molecules. However, current generative models only
focus on modeling either 2D bonding graphs or 3D geometries, which are two
complementary descriptors for molecules. The lack of ability to jointly model
both limits the improvement of generation quality and further downstream
applications. In this paper, we propose a new joint 2D and 3D diffusion model
(JODO) that generates complete molecules with atom types, formal charges, bond
information, and 3D coordinates. To capture the correlation between molecular
graphs and geometries in the diffusion process, we develop a Diffusion Graph
Transformer to parameterize the data prediction model that recovers the
original data from noisy data. The Diffusion Graph Transformer interacts node
and edge representations based on our relational attention mechanism, while
simultaneously propagating and updating scalar features and geometric vectors.
Our model can also be extended for inverse molecular design targeting single or
multiple quantum properties. In our comprehensive evaluation pipeline for
unconditional joint generation, the results of the experiment show that JODO
remarkably outperforms the baselines on the QM9 and GEOM-Drugs datasets.
Furthermore, our model excels in few-step fast sampling, as well as in inverse
molecule design and molecular graph generation. Our code is provided in
https://github.com/GRAPH-0/JODO.
Related papers
- Conditional Synthesis of 3D Molecules with Time Correction Sampler [58.0834973489875]
Time-Aware Conditional Synthesis (TACS) is a novel approach to conditional generation on diffusion models.
It integrates adaptively controlled plug-and-play "online" guidance into a diffusion model, driving samples toward the desired properties.
arXiv Detail & Related papers (2024-11-01T12:59:25Z) - Lift Your Molecules: Molecular Graph Generation in Latent Euclidean Space [46.11163798008912]
We introduce a new framework for molecular graph generation with 3D molecular generative models.
Our framework maps molecular graphs to Euclidean point clouds via synthetic conformer coordinates and learns the inverse map using an E(n)-Equivariant Graph Neural Network (EGNN)
The induced point cloud-structured latent space is well-suited to apply existing 3D molecular generative models.
arXiv Detail & Related papers (2024-06-15T05:29:07Z) - BindGPT: A Scalable Framework for 3D Molecular Design via Language Modeling and Reinforcement Learning [11.862370962277938]
We present a novel generative model, BindGPT, which uses a conceptually simple but powerful approach to create 3D molecules within the protein's binding site.
We show how such simple conceptual approach combined with pretraining and scaling can perform on par or better than the current best specialized diffusion models.
arXiv Detail & Related papers (2024-06-06T02:10:50Z) - Geometric-Facilitated Denoising Diffusion Model for 3D Molecule Generation [32.464905769094536]
Existing diffusion-based generative methods on de novo 3D molecule generation face two major challenges.
We introduce a Dual-Track Transformer Network (DTN) to fully excevate global spatial relationships and learn high quality representations.
As for the second challenge, we design Geometric-Facilitated Loss (GFLoss) which intervenes the formation of bonds during the training period, instead of directly embedding edges into the latent space.
arXiv Detail & Related papers (2024-01-05T07:29:21Z) - Molecule Design by Latent Space Energy-Based Modeling and Gradual
Distribution Shifting [53.44684898432997]
Generation of molecules with desired chemical and biological properties is critical for drug discovery.
We propose a probabilistic generative model to capture the joint distribution of molecules and their properties.
Our method achieves very strong performances on various molecule design tasks.
arXiv Detail & Related papers (2023-06-09T03:04:21Z) - Geometric Latent Diffusion Models for 3D Molecule Generation [172.15028281732737]
Generative models, especially diffusion models (DMs), have achieved promising results for generating feature-rich geometries.
We propose a novel and principled method for 3D molecule generation named Geometric Latent Diffusion Models (GeoLDM)
arXiv Detail & Related papers (2023-05-02T01:07:22Z) - MUDiff: Unified Diffusion for Complete Molecule Generation [104.7021929437504]
We present a new model for generating a comprehensive representation of molecules, including atom features, 2D discrete molecule structures, and 3D continuous molecule coordinates.
We propose a novel graph transformer architecture to denoise the diffusion process.
Our model is a promising approach for designing stable and diverse molecules and can be applied to a wide range of tasks in molecular modeling.
arXiv Detail & Related papers (2023-04-28T04:25:57Z) - An Equivariant Generative Framework for Molecular Graph-Structure
Co-Design [54.92529253182004]
We present MolCode, a machine learning-based generative framework for underlineMolecular graph-structure underlineCo-design.
In MolCode, 3D geometric information empowers the molecular 2D graph generation, which in turn helps guide the prediction of molecular 3D structure.
Our investigation reveals that the 2D topology and 3D geometry contain intrinsically complementary information in molecule design.
arXiv Detail & Related papers (2023-04-12T13:34:22Z) - Generative Diffusion Models on Graphs: Methods and Applications [50.44334458963234]
Diffusion models, as a novel generative paradigm, have achieved remarkable success in various image generation tasks.
Graph generation is a crucial computational task on graphs with numerous real-world applications.
arXiv Detail & Related papers (2023-02-06T06:58:17Z) - MDM: Molecular Diffusion Model for 3D Molecule Generation [19.386468094571725]
Existing diffusion-based 3D molecule generation methods could suffer from unsatisfactory performances.
Interatomic relations are not in molecules' 3D point cloud representations.
Proposed model significantly outperforms existing methods for both unconditional and conditional generation tasks.
arXiv Detail & Related papers (2022-09-13T03:40:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.