Geometric-Facilitated Denoising Diffusion Model for 3D Molecule Generation
- URL: http://arxiv.org/abs/2401.02683v2
- Date: Mon, 22 Apr 2024 13:02:20 GMT
- Title: Geometric-Facilitated Denoising Diffusion Model for 3D Molecule Generation
- Authors: Can Xu, Haosen Wang, Weigang Wang, Pengfei Zheng, Hongyang Chen,
- Abstract summary: Existing diffusion-based generative methods on de novo 3D molecule generation face two major challenges.
We introduce a Dual-Track Transformer Network (DTN) to fully excevate global spatial relationships and learn high quality representations.
As for the second challenge, we design Geometric-Facilitated Loss (GFLoss) which intervenes the formation of bonds during the training period, instead of directly embedding edges into the latent space.
- Score: 32.464905769094536
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Denoising diffusion models have shown great potential in multiple research areas. Existing diffusion-based generative methods on de novo 3D molecule generation face two major challenges. Since majority heavy atoms in molecules allow connections to multiple atoms through single bonds, solely using pair-wise distance to model molecule geometries is insufficient. Therefore, the first one involves proposing an effective neural network as the denoising kernel that is capable to capture complex multi-body interatomic relationships and learn high-quality features. Due to the discrete nature of graphs, mainstream diffusion-based methods for molecules heavily rely on predefined rules and generate edges in an indirect manner. The second challenge involves accommodating molecule generation to diffusion and accurately predicting the existence of bonds. In our research, we view the iterative way of updating molecule conformations in diffusion process is consistent with molecular dynamics and introduce a novel molecule generation method named Geometric-Facilitated Molecular Diffusion (GFMDiff). For the first challenge, we introduce a Dual-Track Transformer Network (DTN) to fully excevate global spatial relationships and learn high quality representations which contribute to accurate predictions of features and geometries. As for the second challenge, we design Geometric-Facilitated Loss (GFLoss) which intervenes the formation of bonds during the training period, instead of directly embedding edges into the latent space. Comprehensive experiments on current benchmarks demonstrate the superiority of GFMDiff.
Related papers
- Conditional Synthesis of 3D Molecules with Time Correction Sampler [58.0834973489875]
Time-Aware Conditional Synthesis (TACS) is a novel approach to conditional generation on diffusion models.
It integrates adaptively controlled plug-and-play "online" guidance into a diffusion model, driving samples toward the desired properties.
arXiv Detail & Related papers (2024-11-01T12:59:25Z) - Geometric Trajectory Diffusion Models [58.853975433383326]
Generative models have shown great promise in generating 3D geometric systems.
Existing approaches only operate on static structures, neglecting the fact that physical systems are always dynamic in nature.
We propose geometric trajectory diffusion models (GeoTDM), the first diffusion model for modeling the temporal distribution of 3D geometric trajectories.
arXiv Detail & Related papers (2024-10-16T20:36:41Z) - LDMol: Text-to-Molecule Diffusion Model with Structurally Informative Latent Space [55.5427001668863]
We present a novel latent diffusion model dubbed LDMol for text-conditioned molecule generation.
LDMol comprises a molecule autoencoder that produces a learnable and structurally informative feature space.
We show that LDMol can be applied to downstream tasks such as molecule-to-text retrieval and text-guided molecule editing.
arXiv Detail & Related papers (2024-05-28T04:59:13Z) - Learning Joint 2D & 3D Diffusion Models for Complete Molecule Generation [32.66694406638287]
We propose a new joint 2D and 3D diffusion model (JODO) that generates molecules with atom types, formal charges, bond information, and 3D coordinates.
Our model can also be extended for inverse molecular design targeting single or multiple quantum properties.
arXiv Detail & Related papers (2023-05-21T04:49:53Z) - Geometric Latent Diffusion Models for 3D Molecule Generation [172.15028281732737]
Generative models, especially diffusion models (DMs), have achieved promising results for generating feature-rich geometries.
We propose a novel and principled method for 3D molecule generation named Geometric Latent Diffusion Models (GeoLDM)
arXiv Detail & Related papers (2023-05-02T01:07:22Z) - MUDiff: Unified Diffusion for Complete Molecule Generation [104.7021929437504]
We present a new model for generating a comprehensive representation of molecules, including atom features, 2D discrete molecule structures, and 3D continuous molecule coordinates.
We propose a novel graph transformer architecture to denoise the diffusion process.
Our model is a promising approach for designing stable and diverse molecules and can be applied to a wide range of tasks in molecular modeling.
arXiv Detail & Related papers (2023-04-28T04:25:57Z) - Modeling Molecular Structures with Intrinsic Diffusion Models [2.487445341407889]
This thesis proposes Intrinsic Diffusion Modeling.
It combines diffusion generative models with scientific knowledge about the flexibility of biological complexes.
We demonstrate the effectiveness of this approach on two fundamental tasks at the basis of computational chemistry and biology.
arXiv Detail & Related papers (2023-02-23T03:26:48Z) - Geometry-Complete Diffusion for 3D Molecule Generation and Optimization [3.8366697175402225]
We introduce the Geometry-Complete Diffusion Model (GCDM) for 3D molecule generation.
GCDM outperforms existing 3D molecular diffusion models by significant margins across conditional and unconditional settings.
We also show that GCDM's geometric features can be repurposed to consistently optimize the geometry and chemical composition of existing 3D molecules.
arXiv Detail & Related papers (2023-02-08T20:01:51Z) - MDM: Molecular Diffusion Model for 3D Molecule Generation [19.386468094571725]
Existing diffusion-based 3D molecule generation methods could suffer from unsatisfactory performances.
Interatomic relations are not in molecules' 3D point cloud representations.
Proposed model significantly outperforms existing methods for both unconditional and conditional generation tasks.
arXiv Detail & Related papers (2022-09-13T03:40:18Z) - Learning Neural Generative Dynamics for Molecular Conformation
Generation [89.03173504444415]
We study how to generate molecule conformations (textiti.e., 3D structures) from a molecular graph.
We propose a novel probabilistic framework to generate valid and diverse conformations given a molecular graph.
arXiv Detail & Related papers (2021-02-20T03:17:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.