論文の概要: Data-driven Mixed Integer Optimization through Probabilistic Multi-variable Branching
- arxiv url: http://arxiv.org/abs/2305.12352v3
- Date: Fri, 04 Apr 2025 18:09:21 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-08 16:00:09.510131
- Title: Data-driven Mixed Integer Optimization through Probabilistic Multi-variable Branching
- Title(参考訳): 確率的多変数分岐によるデータ駆動混合整数最適化
- Authors: Yanguang Chen, Wenzhi Gao, Wanyu Zhang, Dongdong Ge, Huikang Liu, Yinyu Ye,
- Abstract要約: オンライン混合整数プログラム(MIP)をオフラインデータセットと機械学習モデルで高速化する事前学習混合最適化フレームワーク(PreMIO)を提案する。
本手法は, 濃度不等式から選択した超平面を用いて, 実現可能な領域を分割するデータ駆動型多変量基数分岐法に基づく。
- 参考スコア(独自算出の注目度): 8.03915440701838
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we propose a Pre-trained Mixed Integer Optimization framework (PreMIO) that accelerates online mixed integer program (MIP) solving with offline datasets and machine learning models. Our method is based on a data-driven multi-variable cardinality branching procedure that splits the MIP feasible region using hyperplanes chosen by the concentration inequalities. Unlike most previous ML+MIP approaches that either require complicated implementation or suffer from a lack of theoretical justification, our method is simple, flexible, provable, and explainable. Numerical experiments on both classical OR benchmark datasets and real-life instances validate the efficiency of our proposed method.
- Abstract(参考訳): 本稿では,オンライン混合整数プログラム(MIP)をオフラインデータセットと機械学習モデルを用いて高速化する,事前学習型混合整数最適化フレームワーク(PreMIO)を提案する。
本手法は, 濃度不等式から選択した超平面を用いて, MIP実現可能な領域を分割するデータ駆動型多変量基数分岐法に基づく。
従来のML+MIPアプローチでは、複雑な実装を必要とするか、理論的正当化の欠如に悩まされているが、我々の手法は単純で柔軟性があり、証明可能であり、説明可能である。
古典的ORベンチマークデータセットと実時間インスタンスの数値実験により,提案手法の有効性が検証された。
関連論文リスト
- Probabilistic Federated Prompt-Tuning with Non-IID and Imbalanced Data [35.47385526394076]
微調整事前学習モデルは、適度なデータで複雑なタスクを解決する機械学習の一般的なアプローチである。
事前訓練されたモデル全体を微調整することは、ローカルデータ分布が多様に歪んだフェデレーションデータシナリオでは効果がない。
提案手法は,フェデレーション学習を分散集合モデリングタスクに変換し,事前学習したモデルを世界規模で微調整するための多様なプロンプトを集約する。
論文 参考訳(メタデータ) (2025-02-27T04:31:34Z) - Adaptive Sampled Softmax with Inverted Multi-Index: Methods, Theory and Applications [79.53938312089308]
MIDX-Samplerは、逆多重インデックスアプローチに基づく新しい適応型サンプリング戦略である。
本手法は, サンプリングバイアス, 勾配バイアス, 収束速度, 一般化誤差境界などの重要な問題に対処するため, 厳密な理論的解析によって裏付けられている。
論文 参考訳(メタデータ) (2025-01-15T04:09:21Z) - Online Parallel Multi-Task Relationship Learning via Alternating Direction Method of Multipliers [37.859185005986056]
オンラインマルチタスク学習(OMTL)は、複数のタスク間の固有の関係を活用することで、ストリーミングデータ処理を強化する。
本研究では、分散コンピューティング環境に適した最近の最適化である交互方向乗算器法(ADMM)に基づく新しいOMTLフレームワークを提案する。
論文 参考訳(メタデータ) (2024-11-09T10:20:13Z) - An incremental preference elicitation-based approach to learning potentially non-monotonic preferences in multi-criteria sorting [53.36437745983783]
まず最適化モデルを構築し,非単調な選好をモデル化する。
本稿では,情報量測定手法と質問選択戦略を考案し,各イテレーションにおいて最も情報に富む選択肢を特定する。
2つのインクリメンタルな選好に基づくアルゴリズムは、潜在的に単調な選好を学習するために開発された。
論文 参考訳(メタデータ) (2024-09-04T14:36:20Z) - Online Variational Sequential Monte Carlo [49.97673761305336]
我々は,計算効率が高く正確なモデルパラメータ推定とベイジアン潜在状態推定を提供する変分連続モンテカルロ法(VSMC)を構築した。
オンラインVSMCは、パラメータ推定と粒子提案適応の両方を効率よく、完全にオンザフライで実行することができる。
論文 参考訳(メタデータ) (2023-12-19T21:45:38Z) - Value-Biased Maximum Likelihood Estimation for Model-based Reinforcement
Learning in Discounted Linear MDPs [16.006893624836554]
本稿では,VBMLE (Value-Biased Maximum Likelihood Estimation) のレンズによる線形MDPの解法を提案する。
VBMLEは、各時間ステップで1つの最適化問題だけを解決する必要があるため、計算的により効率的である。
後悔する解析では、線形MDPにおけるMLEの一般収束結果が、新しいスーパーマーチンゲール構造を通して提供される。
論文 参考訳(メタデータ) (2023-10-17T18:27:27Z) - Linearization Algorithms for Fully Composite Optimization [61.20539085730636]
本稿では,完全合成最適化問題を凸コンパクト集合で解くための一階アルゴリズムについて検討する。
微分可能および非微分可能を別々に扱い、滑らかな部分のみを線形化することで目的の構造を利用する。
論文 参考訳(メタデータ) (2023-02-24T18:41:48Z) - Greedy Modality Selection via Approximate Submodular Maximization [19.22947539760366]
マルチモーダル学習は、異質な情報ソースを融合することを目的としたマルチモーダルデータからの学習を検討する。
メモリ制約のため、利用可能なすべてのモダリティを活用することが常に可能であるとは限らない。
本研究では,ある計算制約の下で最も情報的かつ補完的なモダリティを効率的に選択することを目的としたモダリティ選択について検討する。
論文 参考訳(メタデータ) (2022-10-22T22:07:27Z) - Sparse high-dimensional linear regression with a partitioned empirical
Bayes ECM algorithm [62.997667081978825]
疎高次元線形回帰に対する計算効率が高く強力なベイズ的手法を提案する。
パラメータに関する最小の事前仮定は、プラグイン経験的ベイズ推定(英語版)を用いて用いられる。
提案手法はRパッケージプローブに実装されている。
論文 参考訳(メタデータ) (2022-09-16T19:15:50Z) - Making Linear MDPs Practical via Contrastive Representation Learning [101.75885788118131]
マルコフ決定過程(MDP)における次元性の呪いに、低ランク表現を利用することで対処することが一般的である。
本稿では,効率的な表現学習を可能にしつつ,正規化を自動的に保証する線形MDPの代替的定義について考察する。
いくつかのベンチマークにおいて、既存の最先端モデルベースおよびモデルフリーアルゴリズムよりも優れた性能を示す。
論文 参考訳(メタデータ) (2022-07-14T18:18:02Z) - HyperImpute: Generalized Iterative Imputation with Automatic Model
Selection [77.86861638371926]
カラムワイズモデルを適応的かつ自動的に構成するための一般化反復計算フレームワークを提案する。
既製の学習者,シミュレータ,インターフェースを備えた具体的な実装を提供する。
論文 参考訳(メタデータ) (2022-06-15T19:10:35Z) - Mixed-Integer Optimization with Constraint Learning [4.462264781248437]
我々は、学習制約を伴う混合整数最適化のための幅広い方法論基盤を確立する。
我々は多くの機械学習手法の混合整数最適化・表現性を利用する。
本手法は,World Food Programme計画と化学療法最適化の両方で実証する。
論文 参考訳(メタデータ) (2021-11-04T20:19:55Z) - Effective multi-view registration of point sets based on student's t
mixture model [15.441928157356477]
本稿では,学生のt混合モデル(StMM)に基づく効果的な登録手法を提案する。
NNサーチ法により全てのt分布セントロイドが得られるため、マルチビュー登録を実現するのがより効率的である。
実験結果は,最先端手法よりも優れた性能と精度を示す。
論文 参考訳(メタデータ) (2020-12-13T08:27:29Z) - Density Fixing: Simple yet Effective Regularization Method based on the
Class Prior [2.3859169601259347]
本稿では,教師付き・半教師付き学習によく用いられる密度固定法という正規化手法の枠組みを提案する。
提案手法は,モデルの事前分布や発生頻度を近似させることで,一般化性能を向上させる。
論文 参考訳(メタデータ) (2020-07-08T04:58:22Z) - MINA: Convex Mixed-Integer Programming for Non-Rigid Shape Alignment [77.38594866794429]
非剛体形状マッチングのための凸混合整数プログラミングの定式化。
効率的な低次元離散モデルに基づく新しい形状変形モデルを提案する。
論文 参考訳(メタデータ) (2020-02-28T09:54:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。