論文の概要: Guided Motion Diffusion for Controllable Human Motion Synthesis
- arxiv url: http://arxiv.org/abs/2305.12577v3
- Date: Sun, 29 Oct 2023 19:27:38 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-31 22:28:46.563146
- Title: Guided Motion Diffusion for Controllable Human Motion Synthesis
- Title(参考訳): 制御可能な人体動作合成のための誘導運動拡散
- Authors: Korrawe Karunratanakul, Konpat Preechakul, Supasorn Suwajanakorn, Siyu
Tang
- Abstract要約: 本稿では,空間的制約を運動生成プロセスに組み込む手法として,誘導運動拡散(GMD)を提案する。
具体的には、空間情報と局所的なポーズの一貫性を高めるために、動きの表現を操作する効果的な特徴投影方式を提案する。
本実験はGMDの開発を正当化し,テキストベースモーション生成における最先端手法を大幅に改善する。
- 参考スコア(独自算出の注目度): 18.660523853430497
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Denoising diffusion models have shown great promise in human motion synthesis
conditioned on natural language descriptions. However, integrating spatial
constraints, such as pre-defined motion trajectories and obstacles, remains a
challenge despite being essential for bridging the gap between isolated human
motion and its surrounding environment. To address this issue, we propose
Guided Motion Diffusion (GMD), a method that incorporates spatial constraints
into the motion generation process. Specifically, we propose an effective
feature projection scheme that manipulates motion representation to enhance the
coherency between spatial information and local poses. Together with a new
imputation formulation, the generated motion can reliably conform to spatial
constraints such as global motion trajectories. Furthermore, given sparse
spatial constraints (e.g. sparse keyframes), we introduce a new dense guidance
approach to turn a sparse signal, which is susceptible to being ignored during
the reverse steps, into denser signals to guide the generated motion to the
given constraints. Our extensive experiments justify the development of GMD,
which achieves a significant improvement over state-of-the-art methods in
text-based motion generation while allowing control of the synthesized motions
with spatial constraints.
- Abstract(参考訳): 発声拡散モデルは、自然言語記述に基づく人間の運動合成において大きな期待が持たれている。
しかし, 運動軌跡や障害物などの空間的制約の統合は, 孤立した人間の運動と周囲の環境とのギャップを埋めるのに不可欠であるにもかかわらず, 依然として課題である。
この問題を解決するために,空間制約を運動生成プロセスに組み込む手法であるガイド運動拡散(GMD)を提案する。
具体的には,空間情報と局所ポーズの一貫性を高めるために,動作表現を操作する効果的な特徴投影方式を提案する。
新しい計算式とともに、生成された動きは、大域的な運動軌跡のような空間的制約に確実に適合することができる。
さらに,空間的制約(例えばスパースキーフレーム)が与えられた場合,逆ステップで無視されやすいスパース信号を,生成された動作を所定の制約に導くためにより密な信号に変換するための,新しい密集した誘導手法を導入する。
広範な実験によりgmdの開発が正当化され,空間制約のある合成動作の制御が可能となり,テキストベースモーション生成における最先端手法よりも大幅に改善した。
関連論文リスト
- KinMo: Kinematic-aware Human Motion Understanding and Generation [6.962697597686156]
テキストに基づく人間の動きの制御は、コンピュータビジョンにおいて重要な課題である。
伝統的なアプローチは、しばしば運動合成のための全体論的な行動記述に依存している。
動作を別個の体節群運動に分解する動き表現を提案する。
論文 参考訳(メタデータ) (2024-11-23T06:50:11Z) - Real-time Diverse Motion In-betweening with Space-time Control [4.910937238451485]
本研究では,キネマティックキャラクタのための多種多様な相互動作を生成するためのデータ駆動型フレームワークを提案する。
本手法は,移動動作と非構造動作の両方を合成し,リッチで汎用的で高品質なアニメーション生成を可能にする。
論文 参考訳(メタデータ) (2024-09-30T22:45:53Z) - Local Action-Guided Motion Diffusion Model for Text-to-Motion Generation [52.87672306545577]
既存の動き生成法は主に大域運動の直接合成に焦点を当てている。
本研究では,局所動作を微粒化制御信号として利用することにより,グローバルな動き生成を容易にする局所動作誘導型動き拡散モデルを提案する。
本手法は,様々な局所動作と連続誘導重み調整をシームレスに組み合わせる柔軟性を提供する。
論文 参考訳(メタデータ) (2024-07-15T08:35:00Z) - MotionLCM: Real-time Controllable Motion Generation via Latent Consistency Model [29.93359157128045]
この研究は、制御可能なモーション生成をリアルタイムレベルに拡張するMotionLCMを導入している。
まず, 遅延拡散モデルに基づく動き生成のための動き潜時一貫性モデル (MotionLCM) を提案する。
一段階(もしくは数段階)の推論を採用することにより、動作生成のための動き潜伏拡散モデルの実行効率をさらに向上する。
論文 参考訳(メタデータ) (2024-04-30T17:59:47Z) - FLD: Fourier Latent Dynamics for Structured Motion Representation and
Learning [19.491968038335944]
本研究では,周期的・準周期的な動きの時空間関係を抽出する自己教師付き構造表現生成手法を提案する。
我々の研究は、一般的な動き表現と学習アルゴリズムの今後の進歩への新たな可能性を開く。
論文 参考訳(メタデータ) (2024-02-21T13:59:21Z) - Motion Flow Matching for Human Motion Synthesis and Editing [75.13665467944314]
本研究では,効率的なサンプリングと効率性を備えた人体運動生成のための新しい生成モデルであるemphMotion Flow Matchingを提案する。
提案手法は, 従来の拡散モデルにおいて, サンプリングの複雑さを1000ステップから10ステップに減らし, テキスト・ツー・モーション・ジェネレーション・ベンチマークやアクション・ツー・モーション・ジェネレーション・ベンチマークで同等の性能を実現する。
論文 参考訳(メタデータ) (2023-12-14T12:57:35Z) - DiffusionPhase: Motion Diffusion in Frequency Domain [69.811762407278]
そこで本研究では,テキスト記述から高品質な人間の動作系列を生成する学習手法を提案する。
既存の技術は、任意の長さの動き列を生成する際に、動きの多様性と滑らかな遷移に苦しむ。
動作空間をコンパクトで表現力のあるパラメータ化位相空間に変換するネットワークエンコーダを開発する。
論文 参考訳(メタデータ) (2023-12-07T04:39:22Z) - MoFusion: A Framework for Denoising-Diffusion-based Motion Synthesis [73.52948992990191]
MoFusionは、高品質な条件付き人間のモーション合成のための新しいノイズ拡散ベースのフレームワークである。
本研究では,運動拡散フレームワーク内での運動可視性に対して,よく知られたキネマティック損失を導入する方法を提案する。
文献の確立されたベンチマークにおけるMoFusionの有効性を,技術の現状と比較した。
論文 参考訳(メタデータ) (2022-12-08T18:59:48Z) - Executing your Commands via Motion Diffusion in Latent Space [51.64652463205012]
本研究では,動作遅延に基づく拡散モデル(MLD)を提案し,条件付き入力に対応する鮮明な動き列を生成する。
我々のMDDは、広範囲な人体運動生成タスクにおいて、最先端の手法よりも大幅に改善されている。
論文 参考訳(メタデータ) (2022-12-08T03:07:00Z) - MoDi: Unconditional Motion Synthesis from Diverse Data [51.676055380546494]
多様な動きを合成する無条件生成モデルであるMoDiを提案する。
我々のモデルは、多様な、構造化されていない、ラベルなしのモーションデータセットから完全に教師なしの設定で訓練されている。
データセットに構造が欠けているにもかかわらず、潜在空間は意味的にクラスタ化可能であることを示す。
論文 参考訳(メタデータ) (2022-06-16T09:06:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。