論文の概要: Phased Data Augmentation for Training a Likelihood-Based Generative Model with Limited Data
- arxiv url: http://arxiv.org/abs/2305.12681v2
- Date: Mon, 18 Mar 2024 06:34:01 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-20 04:32:24.858989
- Title: Phased Data Augmentation for Training a Likelihood-Based Generative Model with Limited Data
- Title(参考訳): 有限データを用いた擬似生成モデルの学習のための位相データ拡張
- Authors: Yuta Mimura,
- Abstract要約: 生成モデルは現実的なイメージの作成に優れていますが、トレーニングのための広範なデータセットに依存しているため、大きな課題があります。
現在のデータ効率の手法はGANアーキテクチャに重点を置いており、他の生成モデルの訓練にギャップを残している。
位相データ拡張(phased data augmentation)は、このギャップに対処する新しい手法であり、データ分散に固有の変更を加えることなく、限られたデータシナリオでのトレーニングを最適化する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Generative models excel in creating realistic images, yet their dependency on extensive datasets for training presents significant challenges, especially in domains where data collection is costly or challenging. Current data-efficient methods largely focus on GAN architectures, leaving a gap in training other types of generative models. Our study introduces "phased data augmentation" as a novel technique that addresses this gap by optimizing training in limited data scenarios without altering the inherent data distribution. By limiting the augmentation intensity throughout the learning phases, our method enhances the model's ability to learn from limited data, thus maintaining fidelity. Applied to a model integrating PixelCNNs with VQ-VAE-2, our approach demonstrates superior performance in both quantitative and qualitative evaluations across diverse datasets. This represents an important step forward in the efficient training of likelihood-based models, extending the usefulness of data augmentation techniques beyond just GANs.
- Abstract(参考訳): 生成モデルは、現実的なイメージの作成に優れていますが、トレーニングのための広範なデータセットへの依存は、特にデータ収集がコストがかかる、あるいは難しい領域において、大きな課題を示します。
現在のデータ効率の手法はGANアーキテクチャに重点を置いており、他の生成モデルの訓練にギャップを残している。
本研究は,データ分散の変化を伴わずに,限られたデータシナリオでのトレーニングを最適化することで,このギャップに対処する新しい手法として「フェーズドデータ拡張」を紹介した。
本手法は,学習段階を通じて拡張強度を制限することにより,限られたデータから学習するモデルの能力を高め,忠実性を維持する。
提案手法は,PixelCNNとVQ-VAE-2を統合したモデルに適用し,様々なデータセットにおける定量評価と定性評価の両方において優れた性能を示す。
これは、可能性に基づくモデルの効率的なトレーニングにおいて重要な一歩であり、GANだけでなく、データ拡張技術の有用性も拡張している。
関連論文リスト
- A Simple Background Augmentation Method for Object Detection with Diffusion Model [53.32935683257045]
コンピュータビジョンでは、データの多様性の欠如がモデル性能を損なうことはよく知られている。
本稿では, 生成モデルの進歩を生かして, 単純かつ効果的なデータ拡張手法を提案する。
背景強化は、特にモデルの堅牢性と一般化能力を大幅に改善する。
論文 参考訳(メタデータ) (2024-08-01T07:40:00Z) - Data Shapley in One Training Run [88.59484417202454]
Data Shapleyは、機械学習コンテキストにおけるデータのコントリビューションに寄与するための、原則化されたフレームワークを提供する。
既存のアプローチでは、計算集約的な異なるデータサブセット上の再学習モデルが必要である。
本稿では、対象とするデータモデルに対するスケーラブルなデータ属性を提供することにより、これらの制限に対処するIn-Run Data Shapleyを紹介する。
論文 参考訳(メタデータ) (2024-06-16T17:09:24Z) - Data Augmentation for Multivariate Time Series Classification: An Experimental Study [1.5390962520179197]
これらのデータセットのサイズは限られていますが、RocketとInceptionTimeモデルを使用して、13のデータセットのうち10の分類精度を向上しました。
これは、コンピュータビジョンで見られる進歩と並行して、効果的なモデルを訓練する上で、十分なデータの重要性を強調している。
論文 参考訳(メタデータ) (2024-06-10T17:58:02Z) - Distribution-Aware Data Expansion with Diffusion Models [55.979857976023695]
本研究では,分散型拡散モデルに基づくトレーニングフリーなデータ拡張フレームワークであるDistDiffを提案する。
DistDiffは、オリジナルデータのみにトレーニングされたモデルと比較して、さまざまなデータセットの精度を一貫して向上させる。
論文 参考訳(メタデータ) (2024-03-11T14:07:53Z) - Diffusion-Based Neural Network Weights Generation [80.89706112736353]
D2NWGは拡散に基づくニューラルネットワーク重み生成技術であり、転送学習のために高性能な重みを効率よく生成する。
本稿では,ニューラルネットワーク重み生成のための遅延拡散パラダイムを再放送するために,生成的ハイパー表現学習を拡張した。
我々のアプローチは大規模言語モデル(LLM)のような大規模アーキテクチャにスケーラブルであり、現在のパラメータ生成技術の限界を克服しています。
論文 参考訳(メタデータ) (2024-02-28T08:34:23Z) - One-Shot Federated Learning with Classifier-Guided Diffusion Models [44.604485649167216]
ワンショット・フェデレーション・ラーニング (OSFL) は, 通信コストの低さから近年注目されている。
本稿では,OSFLに拡散モデルがもたらす新たな機会を探求し,FedCADOを提案する。
FedCADOはクライアントのディストリビューションに準拠したデータを生成し、その後、サーバ上で集約されたモデルをトレーニングします。
論文 参考訳(メタデータ) (2023-11-15T11:11:25Z) - Data-Centric Long-Tailed Image Recognition [49.90107582624604]
ロングテールモデルは高品質なデータに対する強い需要を示している。
データ中心のアプローチは、モデルパフォーマンスを改善するために、データの量と品質の両方を強化することを目的としています。
現在、情報強化の有効性を説明するメカニズムに関する研究が不足している。
論文 参考訳(メタデータ) (2023-11-03T06:34:37Z) - Phoenix: A Federated Generative Diffusion Model [6.09170287691728]
大規模な集中型データセットで生成モデルをトレーニングすることで、データのプライバシやセキュリティ、アクセシビリティといった面での課題が発生する可能性がある。
本稿では,フェデレートラーニング(FL)技術を用いて,複数のデータソースにまたがる拡散確率モデル(DDPM)の学習手法を提案する。
論文 参考訳(メタデータ) (2023-06-07T01:43:09Z) - Instance-Conditioned GAN Data Augmentation for Representation Learning [29.36473147430433]
DA_IC-GANは、学習可能なデータ拡張モジュールで、ほとんどの最先端のトレーニングレシピと組み合わせて、棚外で使用することができる。
DA_IC-GAN は最大容量モデルで 1%p から 2%p の精度を向上できることを示す。
また,DA_IC-GANを自己指導型トレーニングレシピと組み合わせることで,いくつかの設定で1%pの精度向上が達成できることを示す。
論文 参考訳(メタデータ) (2023-03-16T22:45:43Z) - Regularizing Generative Adversarial Networks under Limited Data [88.57330330305535]
本研究は、限られたデータ上で堅牢なGANモデルをトレーニングするための正規化手法を提案する。
正規化損失とLeCam-divergenceと呼ばれるf-divergenceの関連性を示す。
論文 参考訳(メタデータ) (2021-04-07T17:59:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。