論文の概要: A Time-Series Data Augmentation Model through Diffusion and Transformer Integration
- arxiv url: http://arxiv.org/abs/2505.03790v1
- Date: Thu, 01 May 2025 09:40:45 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-08 19:07:35.808975
- Title: A Time-Series Data Augmentation Model through Diffusion and Transformer Integration
- Title(参考訳): 拡散・変圧器統合による時系列データ拡張モデル
- Authors: Yuren Zhang, Zhongnan Pu, Lei Jing,
- Abstract要約: ディープニューラルネットワークは通常、トレーニングのために大量のデータを必要とする。
本稿では,Diffusion モデルと Transformer モデルを組み合わせた簡易かつ効率的な手法を提案する。
ベンチマークとして拡張データを適用したモデルの性能向上を利用して,高品質な拡張データを生成する能力を示す。
- 参考スコア(独自算出の注目度): 0.6437284704257459
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: With the development of Artificial Intelligence, numerous real-world tasks have been accomplished using technology integrated with deep learning. To achieve optimal performance, deep neural networks typically require large volumes of data for training. Although advances in data augmentation have facilitated the acquisition of vast datasets, most of this data is concentrated in domains like images and speech. However, there has been relatively less focus on augmenting time-series data. To address this gap and generate a substantial amount of time-series data, we propose a simple and effective method that combines the Diffusion and Transformer models. By utilizing an adjusted diffusion denoising model to generate a large volume of initial time-step action data, followed by employing a Transformer model to predict subsequent actions, and incorporating a weighted loss function to achieve convergence, the method demonstrates its effectiveness. Using the performance improvement of the model after applying augmented data as a benchmark, and comparing the results with those obtained without data augmentation or using traditional data augmentation methods, this approach shows its capability to produce high-quality augmented data.
- Abstract(参考訳): 人工知能の開発により、ディープラーニングと統合された技術を用いて、多くの現実世界のタスクが達成された。
最適なパフォーマンスを達成するために、ディープニューラルネットワークは通常、トレーニングのために大量のデータを必要とする。
データ拡張の進歩により膨大なデータセットの取得が容易になったが、ほとんどのデータは画像や音声などの領域に集中している。
しかし、時系列データの増大に焦点が当てられているのは比較的少ない。
このギャップに対処し、大量の時系列データを生成するために、DiffusionとTransformerのモデルを組み合わせたシンプルで効果的な手法を提案する。
調整された拡散復調モデルを用いて、初期段階の動作データを大量に生成し、続いてトランスフォーマーモデルを用いてその後の動作を予測することにより、重み付き損失関数を組み込んで収束を実現することにより、その効果を実証する。
拡張データをベンチマークとして適用し、データ拡張や従来のデータ拡張手法を使わずに得られたデータと比較することにより、モデルの性能向上を図り、高品質な拡張データを生成する能力を示す。
関連論文リスト
- Generative Expansion of Small Datasets: An Expansive Graph Approach [13.053285552524052]
最小限のサンプルから大規模で情報豊富なデータセットを生成する拡張合成モデルを提案する。
自己アテンション層と最適なトランスポートを持つオートエンコーダは、分散一貫性を洗練させる。
結果は同等のパフォーマンスを示し、モデルがトレーニングデータを効果的に増強する可能性を示している。
論文 参考訳(メタデータ) (2024-06-25T02:59:02Z) - DetDiffusion: Synergizing Generative and Perceptive Models for Enhanced Data Generation and Perception [78.26734070960886]
現在の知覚モデルは、リソース集約的なデータセットに大きく依存している。
セグメンテーションを通じて知覚認識損失(P.A.損失)を導入し、品質と制御性の両方を改善した。
本手法は,世代間における知覚認識属性(P.A. Attr)の抽出と利用により,データ拡張をカスタマイズする。
論文 参考訳(メタデータ) (2024-03-20T04:58:03Z) - Distribution-Aware Data Expansion with Diffusion Models [55.979857976023695]
本研究では,分散型拡散モデルに基づくトレーニングフリーなデータ拡張フレームワークであるDistDiffを提案する。
DistDiffは、オリジナルデータのみにトレーニングされたモデルと比較して、さまざまなデータセットの精度を一貫して向上させる。
論文 参考訳(メタデータ) (2024-03-11T14:07:53Z) - Data Augmentation for Traffic Classification [54.92823760790628]
Data Augmentation (DA) はコンピュータビジョン(CV)と自然言語処理(NLP)に広く採用されている技術である。
DAはネットワークのコンテキスト、特にトラフィック分類(TC)タスクにおいて、牽引力を得るのに苦労しています。
論文 参考訳(メタデータ) (2024-01-19T15:25:09Z) - Phased Data Augmentation for Training a Likelihood-Based Generative Model with Limited Data [0.0]
生成モデルは現実的なイメージの作成に優れていますが、トレーニングのための広範なデータセットに依存しているため、大きな課題があります。
現在のデータ効率の手法はGANアーキテクチャに重点を置いており、他の生成モデルの訓練にギャップを残している。
位相データ拡張(phased data augmentation)は、このギャップに対処する新しい手法であり、データ分散に固有の変更を加えることなく、限られたデータシナリオでのトレーニングを最適化する。
論文 参考訳(メタデータ) (2023-05-22T03:38:59Z) - Transformer Networks for Data Augmentation of Human Physical Activity
Recognition [61.303828551910634]
Recurrent Generative Adrial Networks (RGAN)のような最先端技術モデルは、リアルな合成データを生成するために使用される。
本稿では,データにグローバルな注意を払っているトランスフォーマーベースの生成敵ネットワークを,PAMAP2とリアルワールドヒューマンアクティビティ認識データセットでRGANと比較する。
論文 参考訳(メタデータ) (2021-09-02T16:47:29Z) - The Imaginative Generative Adversarial Network: Automatic Data
Augmentation for Dynamic Skeleton-Based Hand Gesture and Human Action
Recognition [27.795763107984286]
本稿では、入力データの分布を近似し、この分布から新しいデータをサンプリングする新しい自動データ拡張モデルを提案する。
以上の結果から,拡張戦略は訓練が高速であり,ニューラルネットワークと最先端手法の両方の分類精度を向上させることが可能であることが示唆された。
論文 参考訳(メタデータ) (2021-05-27T11:07:09Z) - Adaptive Weighting Scheme for Automatic Time-Series Data Augmentation [79.47771259100674]
データ拡張のための2つのサンプル適応自動重み付けスキームを提案する。
提案手法を大規模でノイズの多い財務データセットとUCRアーカイブからの時系列データセット上で検証する。
金融データセットでは、取引戦略と組み合わせた手法が50 $%$以上の年間収益の改善につながることを示し、時系列データでは、データセットの半分以上で最新モデルを上回るパフォーマンスを発揮し、他のものと同様の精度を達成しています。
論文 参考訳(メタデータ) (2021-02-16T17:50:51Z) - Complex Wavelet SSIM based Image Data Augmentation [0.0]
我々は,MNIST手書き画像データセットを数値認識に用いる画像データセットとして検討する。
このデータセットの弾性変形に最もよく用いられる拡張手法の1つを詳細に検討する。
本稿では、複雑なウェーブレット構造類似度指標(CWSSIM)と呼ばれる類似度尺度を用いて、無関係なデータを選択的にフィルタリングする手法を提案する。
論文 参考訳(メタデータ) (2020-07-11T21:11:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。