Spatiotemporal Attention-based Semantic Compression for Real-time Video
Recognition
- URL: http://arxiv.org/abs/2305.12796v1
- Date: Mon, 22 May 2023 07:47:27 GMT
- Title: Spatiotemporal Attention-based Semantic Compression for Real-time Video
Recognition
- Authors: Nan Li, Mehdi Bennis, Alexandros Iosifidis and Qi Zhang
- Abstract summary: We propose a temporal attention-based autoencoder (STAE) architecture to evaluate the importance of frames and pixels in each frame.
We develop a lightweight decoder that leverages a 3D-2D CNN combined to reconstruct missing information.
Experimental results show that ViT_STAE can compress the video dataset H51 by 104x with only 5% accuracy loss.
- Score: 117.98023585449808
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper studies the computational offloading of video action recognition
in edge computing. To achieve effective semantic information extraction and
compression, following semantic communication we propose a novel spatiotemporal
attention-based autoencoder (STAE) architecture, including a frame attention
module and a spatial attention module, to evaluate the importance of frames and
pixels in each frame. Additionally, we use entropy encoding to remove
statistical redundancy in the compressed data to further reduce communication
overhead. At the receiver, we develop a lightweight decoder that leverages a
3D-2D CNN combined architecture to reconstruct missing information by
simultaneously learning temporal and spatial information from the received data
to improve accuracy. To fasten convergence, we use a step-by-step approach to
train the resulting STAE-based vision transformer (ViT_STAE) models.
Experimental results show that ViT_STAE can compress the video dataset HMDB51
by 104x with only 5% accuracy loss, outperforming the state-of-the-art baseline
DeepISC. The proposed ViT_STAE achieves faster inference and higher accuracy
than the DeepISC-based ViT model under time-varying wireless channel, which
highlights the effectiveness of STAE in guaranteeing higher accuracy under time
constraints.
Related papers
- SparseTem: Boosting the Efficiency of CNN-Based Video Encoders by Exploiting Temporal Continuity [15.872209884833977]
We propose a memory-efficient scheduling method to eliminate memory overhead and an online adjustment mechanism to minimize accuracy degradation.
SparseTem achieves speedup of 1.79x for EfficientDet and 4.72x for CRNN, with minimal accuracy drop and no additional memory overhead.
arXiv Detail & Related papers (2024-10-28T07:13:25Z) - Disentangling Spatial and Temporal Learning for Efficient Image-to-Video
Transfer Learning [59.26623999209235]
We present DiST, which disentangles the learning of spatial and temporal aspects of videos.
The disentangled learning in DiST is highly efficient because it avoids the back-propagation of massive pre-trained parameters.
Extensive experiments on five benchmarks show that DiST delivers better performance than existing state-of-the-art methods by convincing gaps.
arXiv Detail & Related papers (2023-09-14T17:58:33Z) - You Can Ground Earlier than See: An Effective and Efficient Pipeline for
Temporal Sentence Grounding in Compressed Videos [56.676761067861236]
Given an untrimmed video, temporal sentence grounding aims to locate a target moment semantically according to a sentence query.
Previous respectable works have made decent success, but they only focus on high-level visual features extracted from decoded frames.
We propose a new setting, compressed-domain TSG, which directly utilizes compressed videos rather than fully-decompressed frames as the visual input.
arXiv Detail & Related papers (2023-03-14T12:53:27Z) - Task-Oriented Communication for Edge Video Analytics [11.03999024164301]
This paper proposes a task-oriented communication framework for edge video analytics.
Multiple devices collect visual sensory data and transmit the informative features to an edge server for processing.
We show that the proposed framework effectively encodes task-relevant information of video data and achieves a better rate-performance tradeoff than existing methods.
arXiv Detail & Related papers (2022-11-25T12:09:12Z) - Attention-based Feature Compression for CNN Inference Offloading in Edge
Computing [93.67044879636093]
This paper studies the computational offloading of CNN inference in device-edge co-inference systems.
We propose a novel autoencoder-based CNN architecture (AECNN) for effective feature extraction at end-device.
Experiments show that AECNN can compress the intermediate data by more than 256x with only about 4% accuracy loss.
arXiv Detail & Related papers (2022-11-24T18:10:01Z) - Motion-aware Memory Network for Fast Video Salient Object Detection [15.967509480432266]
We design a space-time memory (STM)-based network, which extracts useful temporal information of the current frame from adjacent frames as the temporal branch of VSOD.
In the encoding stage, we generate high-level temporal features by using high-level features from the current and its adjacent frames.
In the decoding stage, we propose an effective fusion strategy for spatial and temporal branches.
The proposed model does not require optical flow or other preprocessing, and can reach a speed of nearly 100 FPS during inference.
arXiv Detail & Related papers (2022-08-01T15:56:19Z) - STIP: A SpatioTemporal Information-Preserving and Perception-Augmented
Model for High-Resolution Video Prediction [78.129039340528]
We propose a Stemporal Information-Preserving and Perception-Augmented Model (STIP) to solve the above two problems.
The proposed model aims to preserve thetemporal information for videos during the feature extraction and the state transitions.
Experimental results show that the proposed STIP can predict videos with more satisfactory visual quality compared with a variety of state-of-the-art methods.
arXiv Detail & Related papers (2022-06-09T09:49:04Z) - ACDnet: An action detection network for real-time edge computing based
on flow-guided feature approximation and memory aggregation [8.013823319651395]
ACDnet is a compact action detection network targeting real-time edge computing.
It exploits the temporal coherence between successive video frames to approximate CNN features rather than naively extracting them.
It can robustly achieve detection well above real-time (75 FPS)
arXiv Detail & Related papers (2021-02-26T14:06:31Z) - A Real-time Action Representation with Temporal Encoding and Deep
Compression [115.3739774920845]
We propose a new real-time convolutional architecture, called Temporal Convolutional 3D Network (T-C3D), for action representation.
T-C3D learns video action representations in a hierarchical multi-granularity manner while obtaining a high process speed.
Our method achieves clear improvements on UCF101 action recognition benchmark against state-of-the-art real-time methods by 5.4% in terms of accuracy and 2 times faster in terms of inference speed with a less than 5MB storage model.
arXiv Detail & Related papers (2020-06-17T06:30:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.