The African Woman is Rhythmic and Soulful: An Investigation of Implicit Biases in LLM Open-ended Text Generation
- URL: http://arxiv.org/abs/2407.01270v2
- Date: Mon, 30 Sep 2024 16:39:51 GMT
- Title: The African Woman is Rhythmic and Soulful: An Investigation of Implicit Biases in LLM Open-ended Text Generation
- Authors: Serene Lim, María Pérez-Ortiz,
- Abstract summary: Implicit biases are significant because they influence the decisions made by Large Language Models (LLMs)
Traditionally, explicit bias tests or embedding-based methods are employed to detect bias, but these approaches can overlook more nuanced, implicit forms of bias.
We introduce two novel psychological-inspired methodologies to reveal and measure implicit biases through prompt-based and decision-making tasks.
- Score: 3.9945212716333063
- License:
- Abstract: This paper investigates the subtle and often concealed biases present in Large Language Models (LLMs), focusing on implicit biases that may remain despite passing explicit bias tests. Implicit biases are significant because they influence the decisions made by these systems, potentially perpetuating stereotypes and discrimination, even when LLMs appear to function fairly. Traditionally, explicit bias tests or embedding-based methods are employed to detect bias, but these approaches can overlook more nuanced, implicit forms of bias. To address this, we introduce two novel psychological-inspired methodologies: the LLM Implicit Association Test (IAT) Bias and the LLM Decision Bias, designed to reveal and measure implicit biases through prompt-based and decision-making tasks. Additionally, open-ended generation tasks with thematic analysis of word generations and storytelling provide qualitative insights into the model's behavior. Our findings demonstrate that the LLM IAT Bias correlates with traditional methods and more effectively predicts downstream behaviors, as measured by the LLM Decision Bias, offering a more comprehensive framework for detecting subtle biases in AI systems. This research advances the field of AI ethics by proposing new methods to continually assess and mitigate biases in LLMs, highlighting the importance of qualitative and decision-focused evaluations to address challenges that previous approaches have not fully captured.
Related papers
- Bias in Large Language Models: Origin, Evaluation, and Mitigation [4.606140332500086]
Large Language Models (LLMs) have revolutionized natural language processing, but their susceptibility to biases poses significant challenges.
This comprehensive review examines the landscape of bias in LLMs, from its origins to current mitigation strategies.
Ethical and legal implications of biased LLMs are discussed, emphasizing potential harms in real-world applications such as healthcare and criminal justice.
arXiv Detail & Related papers (2024-11-16T23:54:53Z) - Investigating Implicit Bias in Large Language Models: A Large-Scale Study of Over 50 LLMs [0.0]
Large Language Models (LLMs) are being adopted across a wide range of tasks.
Recent research indicates that LLMs can harbor implicit biases even when they pass explicit bias evaluations.
This study highlights that newer or larger language models do not automatically exhibit reduced bias.
arXiv Detail & Related papers (2024-10-13T03:43:18Z) - Cognitive Biases in Large Language Models for News Recommendation [68.90354828533535]
This paper explores the potential impact of cognitive biases on large language models (LLMs) based news recommender systems.
We discuss strategies to mitigate these biases through data augmentation, prompt engineering and learning algorithms aspects.
arXiv Detail & Related papers (2024-10-03T18:42:07Z) - Justice or Prejudice? Quantifying Biases in LLM-as-a-Judge [84.34545223897578]
Despite their excellence in many domains, potential issues are under-explored, undermining their reliability and the scope of their utility.
We identify 12 key potential biases and propose a new automated bias quantification framework-CALM- which quantifies and analyzes each type of bias in LLM-as-a-Judge.
Our work highlights the need for stakeholders to address these issues and remind users to exercise caution in LLM-as-a-Judge applications.
arXiv Detail & Related papers (2024-10-03T17:53:30Z) - Editable Fairness: Fine-Grained Bias Mitigation in Language Models [52.66450426729818]
We propose a novel debiasing approach, Fairness Stamp (FAST), which enables fine-grained calibration of individual social biases.
FAST surpasses state-of-the-art baselines with superior debiasing performance.
This highlights the potential of fine-grained debiasing strategies to achieve fairness in large language models.
arXiv Detail & Related papers (2024-08-07T17:14:58Z) - Towards detecting unanticipated bias in Large Language Models [1.4589372436314496]
Large Language Models (LLMs) have exhibited fairness issues similar to those in previous machine learning systems.
This research focuses on analyzing and quantifying these biases in training data and their impact on the decisions of these models.
arXiv Detail & Related papers (2024-04-03T11:25:20Z) - Investigating Bias in LLM-Based Bias Detection: Disparities between LLMs and Human Perception [13.592532358127293]
We investigate the presence and nature of bias within Large Language Models (LLMs)
We probe whether LLMs exhibit biases, particularly in political bias prediction and text continuation tasks.
We propose debiasing strategies, including prompt engineering and model fine-tuning.
arXiv Detail & Related papers (2024-03-22T00:59:48Z) - Measuring Implicit Bias in Explicitly Unbiased Large Language Models [14.279977138893846]
Large language models (LLMs) can pass explicit social bias tests but still harbor implicit biases.
We introduce two new measures of bias: LLM Implicit Bias, a prompt-based method for revealing implicit bias; and LLM Decision Bias, a strategy to detect subtle discrimination in decision-making tasks.
Using these measures, we found pervasive stereotype biases mirroring those in society in 8 value-aligned models across 4 social categories.
arXiv Detail & Related papers (2024-02-06T15:59:23Z) - GPTBIAS: A Comprehensive Framework for Evaluating Bias in Large Language
Models [83.30078426829627]
Large language models (LLMs) have gained popularity and are being widely adopted by a large user community.
The existing evaluation methods have many constraints, and their results exhibit a limited degree of interpretability.
We propose a bias evaluation framework named GPTBIAS that leverages the high performance of LLMs to assess bias in models.
arXiv Detail & Related papers (2023-12-11T12:02:14Z) - Exploring the Jungle of Bias: Political Bias Attribution in Language Models via Dependency Analysis [86.49858739347412]
Large Language Models (LLMs) have sparked intense debate regarding the prevalence of bias in these models and its mitigation.
We propose a prompt-based method for the extraction of confounding and mediating attributes which contribute to the decision process.
We find that the observed disparate treatment can at least in part be attributed to confounding and mitigating attributes and model misalignment.
arXiv Detail & Related papers (2023-11-15T00:02:25Z) - Bias and Fairness in Large Language Models: A Survey [73.87651986156006]
We present a comprehensive survey of bias evaluation and mitigation techniques for large language models (LLMs)
We first consolidate, formalize, and expand notions of social bias and fairness in natural language processing.
We then unify the literature by proposing three intuitive, two for bias evaluation, and one for mitigation.
arXiv Detail & Related papers (2023-09-02T00:32:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.