Unconditionally secure quantum bit commitment using modified double-slit
and unstable particles
- URL: http://arxiv.org/abs/2305.12902v1
- Date: Mon, 22 May 2023 10:36:25 GMT
- Title: Unconditionally secure quantum bit commitment using modified double-slit
and unstable particles
- Authors: Chi-Yee Cheung
- Abstract summary: We show that the proof of the no-go theorem of unconditionally secure quantum bit commitment is based on a model not universal.
Using unstable particles and a modified double-slit setup, we construct such a protocol and show that it is unconditionally secure.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We note that the proof of the no-go theorem of unconditionally secure quantum
bit commitment is based on a model which is not universal. For protocols not
described by the model, this theorem does not apply. Using unstable particles
and a modified double-slit setup, we construct such a protocol and show that it
is unconditionally secure. In this protocol, the committer transfers no quantum
states to the receiver.
Related papers
- Adiabatic echo protocols for robust quantum many-body state preparation [37.69303106863453]
We introduce the adiabatic echo protocol, a general approach to state preparation designed to suppress the effect of static perturbations.<n>We show that such a protocol emerges naturally in a variety of settings, without requiring assumptions on the form of the control fields.<n>Our results highlight the broad applicability of this protocol, providing a practical framework for reliable many-body state preparation in present-day quantum platforms.
arXiv Detail & Related papers (2025-06-13T18:01:08Z) - Secure quantum bit commitment from separable operations [0.0]
We show that imposing a restriction on the committing party to perform only separable operations enables secure quantum bit commitment schemes.
Specifically, we prove that in any perfectly hiding bit commitment protocol, an honestly-committing party limited to separable operations will be detected with high probability if they attempt to alter their commitment.
arXiv Detail & Related papers (2025-01-13T14:15:11Z) - Quantum Homogenization as a Quantum Steady State Protocol on NISQ Hardware [42.52549987351643]
Quantum homogenization is a reservoir-based quantum state approximation protocol.<n>We extend the standard quantum homogenization protocol to the dynamically-equivalent ($mathttSWAP$)$alpha$ formulation.<n>We show that our proposed protocol yields a completely positive, trace preserving (CPTP) map under which the code subspace is correctable.
arXiv Detail & Related papers (2024-12-19T05:50:54Z) - Probabilistic versions of Quantum Private Queries [0.7252027234425332]
We define two non-deterministic versions of Quantum Private Queries, a protocol addressing the Symmetric-Private Information Retrieval problem.
We show that the strongest variant of such scheme is formally equivalent to Quantum Bit Commitment, Quantum Oblivious Transfer and One-Sided Two Party Computation protocols.
arXiv Detail & Related papers (2024-01-11T09:04:13Z) - Unconditionally Secure Commitments with Quantum Auxiliary Inputs [8.093227427119325]
We show the following unconditional results on quantum commitments in two related yet different models.
We revisit the notion of quantum auxiliary-input commitments introduced by Chailloux, Kerenidis, and Rosgen (Comput. Complex. 2016)
We introduce a new model which we call the common reference quantum state (CRQS) model where both the committer and receiver take the same quantum state that is randomly sampled by an efficient setup algorithm.
arXiv Detail & Related papers (2023-11-30T13:57:30Z) - Orthogonality Broadcasting and Quantum Position Verification [3.549868541921029]
We introduce the study of "orthogonality broadcasting"
We provide a new method for establishing error bounds in the no pre-shared entanglement model.
Our key technical contribution is an uncertainty relation that uses the geometric relation of the states that undergo broadcasting rather than the non-commutative aspect of the final measurements.
arXiv Detail & Related papers (2023-11-01T17:37:20Z) - Security of a Continuous-Variable based Quantum Position Verification
Protocol [0.0]
We present and analyze a protocol that utilizes coherent states and its properties.
We prove security of the protocol against any unentangled attackers via entropic uncertainty relations.
We show that attackers who pre-share one continuous-variable EPR pair can break the protocol.
arXiv Detail & Related papers (2023-08-08T09:56:38Z) - Entropy Accumulation under Post-Quantum Cryptographic Assumptions [4.416484585765028]
In device-independent (DI) quantum protocols, the security statements are oblivious to the characterization of the quantum apparatus.
We present a flexible framework for proving the security of such protocols by utilizing a combination of tools from quantum information theory.
arXiv Detail & Related papers (2023-07-02T12:52:54Z) - Reliable Quantum Communications based on Asymmetry in Distillation and Coding [35.693513369212646]
We address the problem of reliable provision of entangled qubits in quantum computing schemes.
We combine indirect transmission based on teleportation and distillation; (2) direct transmission, based on quantum error correction (QEC)
Our results show that ad-hoc asymmetric codes give, compared to conventional QEC, a performance boost and codeword size reduction both in a single link and in a quantum network scenario.
arXiv Detail & Related papers (2023-05-01T17:13:23Z) - Simple Tests of Quantumness Also Certify Qubits [69.96668065491183]
A test of quantumness is a protocol that allows a classical verifier to certify (only) that a prover is not classical.
We show that tests of quantumness that follow a certain template, which captures recent proposals such as (Kalai et al., 2022) can in fact do much more.
Namely, the same protocols can be used for certifying a qubit, a building-block that stands at the heart of applications such as certifiable randomness and classical delegation of quantum computation.
arXiv Detail & Related papers (2023-03-02T14:18:17Z) - Quantum Proofs of Deletion for Learning with Errors [91.3755431537592]
We construct the first fully homomorphic encryption scheme with certified deletion.
Our main technical ingredient is an interactive protocol by which a quantum prover can convince a classical verifier that a sample from the Learning with Errors distribution in the form of a quantum state was deleted.
arXiv Detail & Related papers (2022-03-03T10:07:32Z) - Impossibility of composable Oblivious Transfer in relativistic quantum
cryptography [0.0]
We study the cryptographic primitive Oblivious Transfer; a composable construction of this resource would allow arbitrary multi-party computation to be carried out in a secure way.
arXiv Detail & Related papers (2021-06-21T15:37:39Z) - Shannon theory for quantum systems and beyond: information compression
for fermions [68.8204255655161]
We show that entanglement fidelity in the fermionic case is capable of evaluating the preservation of correlations.
We introduce a fermionic version of the source coding theorem showing that, as in the quantum case, the von Neumann entropy is the minimal rate for which a fermionic compression scheme exists.
arXiv Detail & Related papers (2021-06-09T10:19:18Z) - Non-equilibrium stationary states of quantum non-Hermitian lattice
models [68.8204255655161]
We show how generic non-Hermitian tight-binding lattice models can be realized in an unconditional, quantum-mechanically consistent manner.
We focus on the quantum steady states of such models for both fermionic and bosonic systems.
arXiv Detail & Related papers (2021-03-02T18:56:44Z) - Using Quantum Metrological Bounds in Quantum Error Correction: A Simple
Proof of the Approximate Eastin-Knill Theorem [77.34726150561087]
We present a proof of the approximate Eastin-Knill theorem, which connects the quality of a quantum error-correcting code with its ability to achieve a universal set of logical gates.
Our derivation employs powerful bounds on the quantum Fisher information in generic quantum metrological protocols.
arXiv Detail & Related papers (2020-04-24T17:58:10Z) - Quantum Mechanical description of Bell's experiment assumes Locality [91.3755431537592]
Bell's experiment description assumes the (Quantum Mechanics-language equivalent of the classical) condition of Locality.
This result is complementary to a recently published one demonstrating that non-Locality is necessary to describe said experiment.
It is concluded that, within the framework of Quantum Mechanics, there is absolutely no reason to believe in the existence of non-Local effects.
arXiv Detail & Related papers (2020-02-27T15:04:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.