Orthogonality Broadcasting and Quantum Position Verification
- URL: http://arxiv.org/abs/2311.00677v3
- Date: Mon, 27 Jan 2025 11:30:30 GMT
- Title: Orthogonality Broadcasting and Quantum Position Verification
- Authors: Ian George, Rene Allerstorfer, Philip Verduyn Lunel, Eric Chitambar,
- Abstract summary: We introduce the study of "orthogonality broadcasting"
We provide a new method for establishing error bounds in the no pre-shared entanglement model.
Our key technical contribution is an uncertainty relation that uses the geometric relation of the states that undergo broadcasting rather than the non-commutative aspect of the final measurements.
- Score: 3.549868541921029
- License:
- Abstract: The no-cloning theorem leads to information-theoretic security in various quantum cryptographic protocols. However, this security typically derives from a possibly weaker property that classical information encoded in certain quantum states cannot be broadcast. To formally capture this property, we introduce the study of "orthogonality broadcasting." When attempting to broadcast the orthogonality of two different qubit bases, we establish that the power of classical and quantum communication is equivalent. However, quantum communication is shown to be strictly more powerful for broadcasting orthogonality in higher dimensions. We then relate orthogonality broadcasting to quantum position verification and provide a new method for establishing error bounds in the no pre-shared entanglement model that can address protocols previous methods could not. Our key technical contribution is an uncertainty relation that uses the geometric relation of the states that undergo broadcasting rather than the non-commutative aspect of the final measurements.
Related papers
- Orthogonal-state-based Measurement Device Independent Quantum Communication [32.244698777387995]
We propose a new protocol of measurement-device-independent quantum secure direct communication and quantum dialogue employing single basis, i.e., Bell basis as decoy qubits for eavesdropping detection.
Our protocols leverage fundamentally distinct resources to close the security loopholes linked to measurement devices, while also effectively doubling the distance for secure direct message transmission.
arXiv Detail & Related papers (2024-09-30T15:57:17Z) - Realizing fracton order from long-range quantum entanglement in programmable Rydberg atom arrays [45.19832622389592]
Storing quantum information requires battling quantum decoherence, which results in a loss of information over time.
To achieve error-resistant quantum memory, one would like to store the information in a quantum superposition of degenerate states engineered in such a way that local sources of noise cannot change one state into another.
We show that this platform also allows to detect and correct certain types of errors en route to the goal of true error-resistant quantum memory.
arXiv Detail & Related papers (2024-07-08T12:46:08Z) - Improving the performance of quantum cryptography by using the
encryption of the error correction data [0.0]
We introduce the idea of encrypting classical communication related to error-correction in order to decrease the amount of information available to the eavesdropper.
We analyze the applicability of the method in the context of additional assumptions concerning the eavesdropper's quantum memory coherence time.
arXiv Detail & Related papers (2023-06-21T15:42:54Z) - Reliable Quantum Communications based on Asymmetry in Distillation and Coding [35.693513369212646]
We address the problem of reliable provision of entangled qubits in quantum computing schemes.
We combine indirect transmission based on teleportation and distillation; (2) direct transmission, based on quantum error correction (QEC)
Our results show that ad-hoc asymmetric codes give, compared to conventional QEC, a performance boost and codeword size reduction both in a single link and in a quantum network scenario.
arXiv Detail & Related papers (2023-05-01T17:13:23Z) - Simple Tests of Quantumness Also Certify Qubits [69.96668065491183]
A test of quantumness is a protocol that allows a classical verifier to certify (only) that a prover is not classical.
We show that tests of quantumness that follow a certain template, which captures recent proposals such as (Kalai et al., 2022) can in fact do much more.
Namely, the same protocols can be used for certifying a qubit, a building-block that stands at the heart of applications such as certifiable randomness and classical delegation of quantum computation.
arXiv Detail & Related papers (2023-03-02T14:18:17Z) - Dispensing of quantum information beyond no-broadcasting theorem -- is
it possible to broadcast anything genuinely quantum? [0.0]
We generalize the standard definition of broadcasting by restricting the set of states which we want to broadcast.
We show that in all of the investigated cases broadcasting is equivalent to commutativity.
arXiv Detail & Related papers (2022-08-19T07:54:59Z) - Semantic Security with Infinite Dimensional Quantum Eavesdropping Channel [1.5070870469725095]
We propose a new proof method for direct coding theorems for wiretap channels.
The method yields errors that decay exponentially with increasing block lengths.
It provides a guarantee of a quantum version of semantic security.
arXiv Detail & Related papers (2022-05-16T13:25:56Z) - Nontraditional Deterministic Remote State Preparation Using a
Non-Maximally Entangled Channel without Additional Quantum Resources [10.351739012146378]
We have developed a nontraditional remote state preparation protocol that allows for deterministically transferring information encoded in quantum states.
With an auxiliary particle and a simple measurement method, the success probability of preparing a d-dimensional quantum state is increased to 1 without spending additional quantum resources in advance to improve quantum channels.
arXiv Detail & Related papers (2022-03-16T08:59:49Z) - Interactive Protocols for Classically-Verifiable Quantum Advantage [46.093185827838035]
"Interactions" between a prover and a verifier can bridge the gap between verifiability and implementation.
We demonstrate the first implementation of an interactive quantum advantage protocol, using an ion trap quantum computer.
arXiv Detail & Related papers (2021-12-09T19:00:00Z) - Direct Quantum Communications in the Presence of Realistic Noisy
Entanglement [69.25543534545538]
We propose a novel quantum communication scheme relying on realistic noisy pre-shared entanglement.
Our performance analysis shows that the proposed scheme offers competitive QBER, yield, and goodput.
arXiv Detail & Related papers (2020-12-22T13:06:12Z) - Quantum cryptography: Public key distribution and coin tossing [0.3655021726150368]
Uncertainty principle gives rise to novel cryptographic phenomena unachievable with traditional transmission media.
We present a protocol for coin-tossing by exchange of quantum messages, which is secure against traditional kinds of cheating.
Ironically can be subverted by use of a still subtler quantum phenomenon, the Einstein-Podolsky-Rosen paradox.
arXiv Detail & Related papers (2020-03-14T05:15:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.