論文の概要: Adaptive action supervision in reinforcement learning from real-world
multi-agent demonstrations
- arxiv url: http://arxiv.org/abs/2305.13030v1
- Date: Mon, 22 May 2023 13:33:37 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-23 15:55:43.290392
- Title: Adaptive action supervision in reinforcement learning from real-world
multi-agent demonstrations
- Title(参考訳): 実世界マルチエージェントによる強化学習における適応的行動指導
- Authors: Keisuke Fujii, Kazushi Tsutsui, Atom Scott, Hiroshi Nakahara, Naoya
Takeishi, Yoshinobu Kawahara
- Abstract要約: マルチエージェントシナリオにおける実世界の実演からRLにおける適応的行動監視手法を提案する。
実験では,未知のソースとターゲット環境の異なるダイナミックスを用いて,チェイス・アンド・エスケープとフットボールのタスクを用いて,本手法がベースラインと比較して一般化能力と一般化能力のバランスを保っていることを示す。
- 参考スコア(独自算出の注目度): 12.468787251498568
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Modeling of real-world biological multi-agents is a fundamental problem in
various scientific and engineering fields. Reinforcement learning (RL) is a
powerful framework to generate flexible and diverse behaviors in cyberspace;
however, when modeling real-world biological multi-agents, there is a domain
gap between behaviors in the source (i.e., real-world data) and the target
(i.e., cyberspace for RL), and the source environment parameters are usually
unknown. In this paper, we propose a method for adaptive action supervision in
RL from real-world demonstrations in multi-agent scenarios. We adopt an
approach that combines RL and supervised learning by selecting actions of
demonstrations in RL based on the minimum distance of dynamic time warping for
utilizing the information of the unknown source dynamics. This approach can be
easily applied to many existing neural network architectures and provide us
with an RL model balanced between reproducibility as imitation and
generalization ability to obtain rewards in cyberspace. In the experiments,
using chase-and-escape and football tasks with the different dynamics between
the unknown source and target environments, we show that our approach achieved
a balance between the reproducibility and the generalization ability compared
with the baselines. In particular, we used the tracking data of professional
football players as expert demonstrations in football and show successful
performances despite the larger gap between behaviors in the source and target
environments than the chase-and-escape task.
- Abstract(参考訳): 実世界の生物多エージェントのモデリングは、様々な科学・工学分野における根本的な問題である。
強化学習(Reinforcement Learning, RL)は、サイバー空間における柔軟な多様な行動を生成する強力なフレームワークであるが、実世界の生物学的多エージェントをモデル化する際には、ソース(実世界のデータ)とターゲット(即ちRLのサイバー空間)の振る舞いと、ソース環境パラメータが通常不明である。
本稿では,マルチエージェントシナリオにおける実世界の実演からRLにおける適応的行動監視手法を提案する。
本研究では, 動的時間ワーピングの最小距離に基づいて, rlにおける実演の動作を選択することで, rlと教師付き学習を組み合わせる手法を提案する。
このアプローチは多くの既存のニューラルネットワークアーキテクチャに容易に適用でき、再現可能性とサイバースペースにおける報酬を得るために一般化能力のバランスをとるRLモデルを提供する。
実験では,未知のソースとターゲット環境の異なるダイナミックスを用いて,チェイス・アンド・エスケープとフットボールのタスクを用いて,再現性と一般化能力のバランスを,ベースラインと比較して達成した。
特に,プロサッカー選手の追跡データをサッカーのエキスパート・デモとして使用し,チェイス・アンド・エスケープ・タスクよりもソースとターゲット環境の挙動の差が大きいにもかかわらず,成功例を示した。
関連論文リスト
- Online Decision MetaMorphFormer: A Casual Transformer-Based Reinforcement Learning Framework of Universal Embodied Intelligence [2.890656584329591]
Online Decision MetaMorphFormer (ODM)は、自己認識、環境認識、行動計画の実現を目的としている。
ODMは、異なる環境にあるマルチジョイントボディを持つ任意のエージェントに適用することができ、大規模な事前トレーニングデータセットを使用して、さまざまなタイプのタスクでトレーニングすることができる。
論文 参考訳(メタデータ) (2024-09-11T15:22:43Z) - An Interactive Agent Foundation Model [49.77861810045509]
本稿では,AIエージェントを訓練するための新しいマルチタスクエージェントトレーニングパラダイムを用いた対話型エージェント基礎モデルを提案する。
トレーニングパラダイムは、視覚マスク付きオートエンコーダ、言語モデリング、次世代の予測など、多様な事前学習戦略を統一する。
私たちは、ロボティクス、ゲームAI、ヘルスケアという3つの異なる領域でフレームワークのパフォーマンスを実演します。
論文 参考訳(メタデータ) (2024-02-08T18:58:02Z) - The RL Perceptron: Generalisation Dynamics of Policy Learning in High
Dimensions [14.778024171498208]
強化学習アルゴリズムは、様々な領域において変形的であることが証明されている。
RLの多くの理論は、離散状態空間や最悪のケース解析に焦点を当てている。
本稿では,様々な学習プロトコルを捉えることができるRLの高次元解像モデルを提案する。
論文 参考訳(メタデータ) (2023-06-17T18:16:51Z) - Predictive Experience Replay for Continual Visual Control and
Forecasting [62.06183102362871]
視覚力学モデリングのための新しい連続学習手法を提案し,その視覚制御と予測における有効性について検討する。
まず,タスク固有のダイナミクスをガウスの混合で学習する混合世界モデルを提案し,その上で,破滅的な忘れを克服するための新たなトレーニング戦略を提案する。
我々のモデルは,DeepMind Control と Meta-World のベンチマークにおいて,既存の連続的学習アルゴリズムと視覚的RLアルゴリズムの単純な組み合わせよりも優れている。
論文 参考訳(メタデータ) (2023-03-12T05:08:03Z) - Mastering the Unsupervised Reinforcement Learning Benchmark from Pixels [112.63440666617494]
強化学習アルゴリズムは成功するが、エージェントと環境の間の大量の相互作用を必要とする。
本稿では,教師なしモデルベースRLを用いてエージェントを事前学習する手法を提案する。
我々はReal-Word RLベンチマークにおいて、適応中の環境摂動に対する抵抗性を示唆し、堅牢な性能を示す。
論文 参考訳(メタデータ) (2022-09-24T14:22:29Z) - Multitask Adaptation by Retrospective Exploration with Learned World
Models [77.34726150561087]
本稿では,タスク非依存ストレージから取得したMBRLエージェントのトレーニングサンプルを提供するRAMaというメタ学習型アドレッシングモデルを提案する。
このモデルは、期待されるエージェントのパフォーマンスを最大化するために、ストレージから事前のタスクを解く有望な軌道を選択することで訓練される。
論文 参考訳(メタデータ) (2021-10-25T20:02:57Z) - Non-Markovian Reinforcement Learning using Fractional Dynamics [3.000697999889031]
強化学習(Reinforcement Learning, RL)は、環境と相互作用するエージェントの制御ポリシーを学ぶ技術である。
本稿では,非マルコフ力学を持つシステムに対するモデルベースRL手法を提案する。
このような環境は、人間の生理学、生物学的システム、物質科学、人口動態など、現実世界の多くの応用で一般的である。
論文 参考訳(メタデータ) (2021-07-29T07:35:13Z) - Scenic4RL: Programmatic Modeling and Generation of Reinforcement
Learning Environments [89.04823188871906]
リアルタイム戦略(RTS)環境では,多様な現実シナリオの生成が難しい。
既存のシミュレータのほとんどは環境をランダムに生成することに頼っている。
我々は、研究者を支援するために、既存の形式シナリオ仕様言語であるSCENICを採用する利点を紹介する。
論文 参考訳(メタデータ) (2021-06-18T21:49:46Z) - The AI Arena: A Framework for Distributed Multi-Agent Reinforcement
Learning [0.3437656066916039]
分散マルチエージェント強化学習のための柔軟な抽象化を備えたスケーラブルなフレームワークであるAI Arenaを紹介します。
複数の異なる学習環境において、一般的なRL技術よりも分散マルチエージェント学習アプローチによる性能向上を示す。
論文 参考訳(メタデータ) (2021-03-09T22:16:19Z) - Trajectory-wise Multiple Choice Learning for Dynamics Generalization in
Reinforcement Learning [137.39196753245105]
本稿では,動的一般化のためのマルチヘッドダイナミックスモデルを学習するモデルベース強化学習アルゴリズムを提案する。
文脈学習は,過去の経験から得られる動的情報からコンテキスト潜在ベクトルにエンコードする。
提案手法は,最先端のRL法と比較して,様々な制御タスクにおいて優れたゼロショット一般化性能を示す。
論文 参考訳(メタデータ) (2020-10-26T03:20:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。