Causality-Aided Trade-off Analysis for Machine Learning Fairness
- URL: http://arxiv.org/abs/2305.13057v3
- Date: Tue, 3 Oct 2023 09:41:29 GMT
- Title: Causality-Aided Trade-off Analysis for Machine Learning Fairness
- Authors: Zhenlan Ji, Pingchuan Ma, Shuai Wang, Yanhui Li
- Abstract summary: This paper uses causality analysis as a principled method for analyzing trade-offs between fairness parameters and other crucial metrics in machine learning pipelines.
We propose a set of domain-specific optimizations to facilitate accurate causal discovery and a unified, novel interface for trade-off analysis based on well-established causal inference methods.
- Score: 11.149507394656709
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: There has been an increasing interest in enhancing the fairness of machine
learning (ML). Despite the growing number of fairness-improving methods, we
lack a systematic understanding of the trade-offs among factors considered in
the ML pipeline when fairness-improving methods are applied. This understanding
is essential for developers to make informed decisions regarding the provision
of fair ML services. Nonetheless, it is extremely difficult to analyze the
trade-offs when there are multiple fairness parameters and other crucial
metrics involved, coupled, and even in conflict with one another.
This paper uses causality analysis as a principled method for analyzing
trade-offs between fairness parameters and other crucial metrics in ML
pipelines. To ractically and effectively conduct causality analysis, we propose
a set of domain-specific optimizations to facilitate accurate causal discovery
and a unified, novel interface for trade-off analysis based on well-established
causal inference methods. We conduct a comprehensive empirical study using
three real-world datasets on a collection of widelyused fairness-improving
techniques. Our study obtains actionable suggestions for users and developers
of fair ML. We further demonstrate the versatile usage of our approach in
selecting the optimal fairness-improving method, paving the way for more
ethical and socially responsible AI technologies.
Related papers
- Counterfactual Fairness by Combining Factual and Counterfactual Predictions [18.950415688199993]
In high-stake domains such as healthcare and hiring, the role of machine learning (ML) in decision-making raises significant fairness concerns.
This work focuses on Counterfactual Fairness (CF), which posits that an ML model's outcome on any individual should remain unchanged if they had belonged to a different demographic group.
We provide a theoretical study on the inherent trade-off between CF and predictive performance in a model-agnostic manner.
arXiv Detail & Related papers (2024-09-03T15:21:10Z) - Toward Operationalizing Pipeline-aware ML Fairness: A Research Agenda
for Developing Practical Guidelines and Tools [18.513353100744823]
Recent work has called on the ML community to take a more holistic approach to tackle fairness issues.
We first demonstrate that without clear guidelines and toolkits, even individuals with specialized ML knowledge find it challenging to hypothesize how various design choices influence model behavior.
We then consult the fair-ML literature to understand the progress to date toward operationalizing the pipeline-aware approach.
arXiv Detail & Related papers (2023-09-29T15:48:26Z) - Learning Fair Classifiers via Min-Max F-divergence Regularization [13.81078324883519]
We introduce a novel min-max F-divergence regularization framework for learning fair classification models.
We show that F-divergence measures possess convexity and differentiability properties.
We show that the proposed framework achieves state-of-the-art performance with respect to the trade-off between accuracy and fairness.
arXiv Detail & Related papers (2023-06-28T20:42:04Z) - FFB: A Fair Fairness Benchmark for In-Processing Group Fairness Methods [84.1077756698332]
This paper introduces the Fair Fairness Benchmark (textsfFFB), a benchmarking framework for in-processing group fairness methods.
We provide a comprehensive analysis of state-of-the-art methods to ensure different notions of group fairness.
arXiv Detail & Related papers (2023-06-15T19:51:28Z) - Causal Fairness Analysis [68.12191782657437]
We introduce a framework for understanding, modeling, and possibly solving issues of fairness in decision-making settings.
The main insight of our approach will be to link the quantification of the disparities present on the observed data with the underlying, and often unobserved, collection of causal mechanisms.
Our effort culminates in the Fairness Map, which is the first systematic attempt to organize and explain the relationship between different criteria found in the literature.
arXiv Detail & Related papers (2022-07-23T01:06:34Z) - DRFLM: Distributionally Robust Federated Learning with Inter-client
Noise via Local Mixup [58.894901088797376]
federated learning has emerged as a promising approach for training a global model using data from multiple organizations without leaking their raw data.
We propose a general framework to solve the above two challenges simultaneously.
We provide comprehensive theoretical analysis including robustness analysis, convergence analysis, and generalization ability.
arXiv Detail & Related papers (2022-04-16T08:08:29Z) - Can Active Learning Preemptively Mitigate Fairness Issues? [66.84854430781097]
dataset bias is one of the prevailing causes of unfairness in machine learning.
We study whether models trained with uncertainty-based ALs are fairer in their decisions with respect to a protected class.
We also explore the interaction of algorithmic fairness methods such as gradient reversal (GRAD) and BALD.
arXiv Detail & Related papers (2021-04-14T14:20:22Z) - Leveraging Expert Consistency to Improve Algorithmic Decision Support [62.61153549123407]
We explore the use of historical expert decisions as a rich source of information that can be combined with observed outcomes to narrow the construct gap.
We propose an influence function-based methodology to estimate expert consistency indirectly when each case in the data is assessed by a single expert.
Our empirical evaluation, using simulations in a clinical setting and real-world data from the child welfare domain, indicates that the proposed approach successfully narrows the construct gap.
arXiv Detail & Related papers (2021-01-24T05:40:29Z) - Improving Fair Predictions Using Variational Inference In Causal Models [8.557308138001712]
The importance of algorithmic fairness grows with the increasing impact machine learning has on people's lives.
Recent work on fairness metrics shows the need for causal reasoning in fairness constraints.
This research aims to contribute to machine learning techniques which honour our ethical and legal boundaries.
arXiv Detail & Related papers (2020-08-25T08:27:11Z) - Accuracy and Fairness Trade-offs in Machine Learning: A Stochastic
Multi-Objective Approach [0.0]
In the application of machine learning to real-life decision-making systems, the prediction outcomes might discriminate against people with sensitive attributes, leading to unfairness.
The commonly used strategy in fair machine learning is to include fairness as a constraint or a penalization term in the minimization of the prediction loss.
In this paper, we introduce a new approach to handle fairness by formulating a multi-objective optimization problem.
arXiv Detail & Related papers (2020-08-03T18:51:24Z) - Causal Feature Selection for Algorithmic Fairness [61.767399505764736]
We consider fairness in the integration component of data management.
We propose an approach to identify a sub-collection of features that ensure the fairness of the dataset.
arXiv Detail & Related papers (2020-06-10T20:20:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.