Learning Fair Classifiers via Min-Max F-divergence Regularization
- URL: http://arxiv.org/abs/2306.16552v1
- Date: Wed, 28 Jun 2023 20:42:04 GMT
- Title: Learning Fair Classifiers via Min-Max F-divergence Regularization
- Authors: Meiyu Zhong, Ravi Tandon
- Abstract summary: We introduce a novel min-max F-divergence regularization framework for learning fair classification models.
We show that F-divergence measures possess convexity and differentiability properties.
We show that the proposed framework achieves state-of-the-art performance with respect to the trade-off between accuracy and fairness.
- Score: 13.81078324883519
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As machine learning (ML) based systems are adopted in domains such as law
enforcement, criminal justice, finance, hiring and admissions, ensuring the
fairness of ML aided decision-making is becoming increasingly important. In
this paper, we focus on the problem of fair classification, and introduce a
novel min-max F-divergence regularization framework for learning fair
classification models while preserving high accuracy. Our framework consists of
two trainable networks, namely, a classifier network and a bias/fairness
estimator network, where the fairness is measured using the statistical notion
of F-divergence. We show that F-divergence measures possess convexity and
differentiability properties, and their variational representation make them
widely applicable in practical gradient based training methods. The proposed
framework can be readily adapted to multiple sensitive attributes and for high
dimensional datasets. We study the F-divergence based training paradigm for two
types of group fairness constraints, namely, demographic parity and equalized
odds. We present a comprehensive set of experiments for several real-world data
sets arising in multiple domains (including COMPAS, Law Admissions, Adult
Income, and CelebA datasets). To quantify the fairness-accuracy tradeoff, we
introduce the notion of fairness-accuracy receiver operating characteristic
(FA-ROC) and a corresponding \textit{low-bias} FA-ROC, which we argue is an
appropriate measure to evaluate different classifiers. In comparison to several
existing approaches for learning fair classifiers (including pre-processing,
post-processing and other regularization methods), we show that the proposed
F-divergence based framework achieves state-of-the-art performance with respect
to the trade-off between accuracy and fairness.
Related papers
- Enhancing Fairness in Neural Networks Using FairVIC [0.0]
Mitigating bias in automated decision-making systems, specifically deep learning models, is a critical challenge in achieving fairness.
We introduce FairVIC, an innovative approach designed to enhance fairness in neural networks by addressing inherent biases at the training stage.
We observe a significant improvement in fairness across all metrics tested, without compromising the model's accuracy to a detrimental extent.
arXiv Detail & Related papers (2024-04-28T10:10:21Z) - DualFair: Fair Representation Learning at Both Group and Individual
Levels via Contrastive Self-supervision [73.80009454050858]
This work presents a self-supervised model, called DualFair, that can debias sensitive attributes like gender and race from learned representations.
Our model jointly optimize for two fairness criteria - group fairness and counterfactual fairness.
arXiv Detail & Related papers (2023-03-15T07:13:54Z) - FairAdaBN: Mitigating unfairness with adaptive batch normalization and
its application to dermatological disease classification [14.589159162086926]
We propose FairAdaBN, which makes batch normalization adaptive to sensitive attribute.
We propose a new metric, named Fairness-Accuracy Trade-off Efficiency (FATE), to compute normalized fairness improvement over accuracy drop.
Experiments on two dermatological datasets show that our proposed method outperforms other methods on fairness criteria and FATE.
arXiv Detail & Related papers (2023-03-15T02:22:07Z) - Practical Approaches for Fair Learning with Multitype and Multivariate
Sensitive Attributes [70.6326967720747]
It is important to guarantee that machine learning algorithms deployed in the real world do not result in unfairness or unintended social consequences.
We introduce FairCOCCO, a fairness measure built on cross-covariance operators on reproducing kernel Hilbert Spaces.
We empirically demonstrate consistent improvements against state-of-the-art techniques in balancing predictive power and fairness on real-world datasets.
arXiv Detail & Related papers (2022-11-11T11:28:46Z) - FairIF: Boosting Fairness in Deep Learning via Influence Functions with
Validation Set Sensitive Attributes [51.02407217197623]
We propose a two-stage training algorithm named FAIRIF.
It minimizes the loss over the reweighted data set where the sample weights are computed.
We show that FAIRIF yields models with better fairness-utility trade-offs against various types of bias.
arXiv Detail & Related papers (2022-01-15T05:14:48Z) - Fair Tree Learning [0.15229257192293202]
Various optimisation criteria combine classification performance with a fairness metric.
Current fair decision tree methods only optimise for a fixed threshold on both the classification task as well as the fairness metric.
We propose a threshold-independent fairness metric termed uniform demographic parity, and a derived splitting criterion entitled SCAFF -- Splitting Criterion AUC for Fairness.
arXiv Detail & Related papers (2021-10-18T13:40:25Z) - Algorithmic Fairness Verification with Graphical Models [24.8005399877574]
We propose an efficient fairness verifier, called FVGM, that encodes correlations among features as a Bayesian network.
We show that FVGM leads to an accurate and scalable assessment for more diverse families of fairness-enhancing algorithms.
arXiv Detail & Related papers (2021-09-20T12:05:14Z) - MultiFair: Multi-Group Fairness in Machine Learning [52.24956510371455]
We study multi-group fairness in machine learning (MultiFair)
We propose a generic end-to-end algorithmic framework to solve it.
Our proposed framework is generalizable to many different settings.
arXiv Detail & Related papers (2021-05-24T02:30:22Z) - Towards Fair Knowledge Transfer for Imbalanced Domain Adaptation [61.317911756566126]
We propose a Towards Fair Knowledge Transfer framework to handle the fairness challenge in imbalanced cross-domain learning.
Specifically, a novel cross-domain mixup generation is exploited to augment the minority source set with target information to enhance fairness.
Our model significantly improves over 20% on two benchmarks in terms of the overall accuracy.
arXiv Detail & Related papers (2020-10-23T06:29:09Z) - Towards Model-Agnostic Post-Hoc Adjustment for Balancing Ranking
Fairness and Algorithm Utility [54.179859639868646]
Bipartite ranking aims to learn a scoring function that ranks positive individuals higher than negative ones from labeled data.
There have been rising concerns on whether the learned scoring function can cause systematic disparity across different protected groups.
We propose a model post-processing framework for balancing them in the bipartite ranking scenario.
arXiv Detail & Related papers (2020-06-15T10:08:39Z) - Fairness by Explicability and Adversarial SHAP Learning [0.0]
We propose a new definition of fairness that emphasises the role of an external auditor and model explicability.
We develop a framework for mitigating model bias using regularizations constructed from the SHAP values of an adversarial surrogate model.
We demonstrate our approaches using gradient and adaptive boosting on: a synthetic dataset, the UCI Adult (Census) dataset and a real-world credit scoring dataset.
arXiv Detail & Related papers (2020-03-11T14:36:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.