A Model Stealing Attack Against Multi-Exit Networks
- URL: http://arxiv.org/abs/2305.13584v2
- Date: Mon, 17 Mar 2025 00:56:01 GMT
- Title: A Model Stealing Attack Against Multi-Exit Networks
- Authors: Li Pan, Lv Peizhuo, Chen Kai, Zhang Shengzhi, Cai Yuling, Xiang Fan,
- Abstract summary: We propose the first model stealing attack against multi-exit networks to extract both the model utility and the output strategy.<n>In experiments across multiple multi-exit networks and benchmark datasets, our method always achieves accuracy and efficiency closest to the victim models.
- Score: 13.971211573064739
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Compared to traditional neural networks with a single output channel, a multi-exit network has multiple exits that allow for early outputs from the model's intermediate layers, thus significantly improving computational efficiency while maintaining similar main task accuracy. Existing model stealing attacks can only steal the model's utility while failing to capture its output strategy, i.e., a set of thresholds used to determine from which exit to output. This leads to a significant decrease in computational efficiency for the extracted model, thereby losing the advantage of multi-exit networks. In this paper, we propose the first model stealing attack against multi-exit networks to extract both the model utility and the output strategy. We employ Kernel Density Estimation to analyze the target model's output strategy and use performance loss and strategy loss to guide the training of the extracted model. Furthermore, we design a novel output strategy search algorithm to maximize the consistency between the victim model and the extracted model's output behaviors. In experiments across multiple multi-exit networks and benchmark datasets, our method always achieves accuracy and efficiency closest to the victim models.
Related papers
- Efficient and Effective Model Extraction [15.597734509459332]
Model extraction aims to create a functionally similar copy from a machine learning as a service (ML) API with minimal overhead.
We propose an algorithm, Efficient and Effective Model Extraction (E3), focusing on both query preparation and training routine.
E3 achieves superior generalization compared to state-of-the-art methods while minimizing computational costs.
arXiv Detail & Related papers (2024-09-21T12:22:09Z) - CAMH: Advancing Model Hijacking Attack in Machine Learning [44.58778557522968]
Category-Agnostic Model Hijacking (CAMH) is a novel model hijacking attack method.
It addresses the challenges of class number mismatch, data distribution divergence, and performance balance between the original and hijacking tasks.
We demonstrate its potent attack effectiveness while ensuring minimal degradation in the performance of the original task.
arXiv Detail & Related papers (2024-08-25T07:03:01Z) - BEND: Bagging Deep Learning Training Based on Efficient Neural Network Diffusion [56.9358325168226]
We propose a Bagging deep learning training algorithm based on Efficient Neural network Diffusion (BEND)
Our approach is simple but effective, first using multiple trained model weights and biases as inputs to train autoencoder and latent diffusion model.
Our proposed BEND algorithm can consistently outperform the mean and median accuracies of both the original trained model and the diffused model.
arXiv Detail & Related papers (2024-03-23T08:40:38Z) - TEN-GUARD: Tensor Decomposition for Backdoor Attack Detection in Deep
Neural Networks [3.489779105594534]
We introduce a novel approach to backdoor detection using two tensor decomposition methods applied to network activations.
This has a number of advantages relative to existing detection methods, including the ability to analyze multiple models at the same time.
Results show that our method detects backdoored networks more accurately and efficiently than current state-of-the-art methods.
arXiv Detail & Related papers (2024-01-06T03:08:28Z) - A-SDM: Accelerating Stable Diffusion through Redundancy Removal and
Performance Optimization [54.113083217869516]
In this work, we first explore the computational redundancy part of the network.
We then prune the redundancy blocks of the model and maintain the network performance.
Thirdly, we propose a global-regional interactive (GRI) attention to speed up the computationally intensive attention part.
arXiv Detail & Related papers (2023-12-24T15:37:47Z) - Layer-wise Linear Mode Connectivity [52.6945036534469]
Averaging neural network parameters is an intuitive method for the knowledge of two independent models.
It is most prominently used in federated learning.
We analyse the performance of the models that result from averaging single, or groups.
arXiv Detail & Related papers (2023-07-13T09:39:10Z) - Ownership Protection of Generative Adversarial Networks [9.355840335132124]
Generative adversarial networks (GANs) have shown remarkable success in image synthesis.
It is critical to technically protect the intellectual property of GANs.
We propose a new ownership protection method based on the common characteristics of a target model and its stolen models.
arXiv Detail & Related papers (2023-06-08T14:31:58Z) - Dynamic Transformers Provide a False Sense of Efficiency [75.39702559746533]
Multi-exit models make a trade-off between efficiency and accuracy, where the saving of computation comes from an early exit.
We propose a simple yet effective attacking framework, SAME, which is specially tailored to reduce the efficiency of the multi-exit models.
Experiments on the GLUE benchmark show that SAME can effectively diminish the efficiency gain of various multi-exit models by 80% on average.
arXiv Detail & Related papers (2023-05-20T16:41:48Z) - DST: Dynamic Substitute Training for Data-free Black-box Attack [79.61601742693713]
We propose a novel dynamic substitute training attack method to encourage substitute model to learn better and faster from the target model.
We introduce a task-driven graph-based structure information learning constrain to improve the quality of generated training data.
arXiv Detail & Related papers (2022-04-03T02:29:11Z) - Robust Binary Models by Pruning Randomly-initialized Networks [57.03100916030444]
We propose ways to obtain robust models against adversarial attacks from randomly-d binary networks.
We learn the structure of the robust model by pruning a randomly-d binary network.
Our method confirms the strong lottery ticket hypothesis in the presence of adversarial attacks.
arXiv Detail & Related papers (2022-02-03T00:05:08Z) - MEGA: Model Stealing via Collaborative Generator-Substitute Networks [4.065949099860426]
Recent data-free model stealingmethods are shown effective to extract the knowledge of thetarget model without using real query examples.
We propose a data-free model stealing frame-work,MEGA, which is based on collaborative generator-substitute networks.
Our results show that theaccuracy of our trained substitute model and the adversarialattack success rate over it can be up to 33% and 40% higherthan state-of-the-art data-free black-box attacks.
arXiv Detail & Related papers (2022-01-31T09:34:28Z) - Firearm Detection via Convolutional Neural Networks: Comparing a
Semantic Segmentation Model Against End-to-End Solutions [68.8204255655161]
Threat detection of weapons and aggressive behavior from live video can be used for rapid detection and prevention of potentially deadly incidents.
One way for achieving this is through the use of artificial intelligence and, in particular, machine learning for image analysis.
We compare a traditional monolithic end-to-end deep learning model and a previously proposed model based on an ensemble of simpler neural networks detecting fire-weapons via semantic segmentation.
arXiv Detail & Related papers (2020-12-17T15:19:29Z) - Model-Augmented Actor-Critic: Backpropagating through Paths [81.86992776864729]
Current model-based reinforcement learning approaches use the model simply as a learned black-box simulator.
We show how to make more effective use of the model by exploiting its differentiability.
arXiv Detail & Related papers (2020-05-16T19:18:10Z) - Model Extraction Attacks against Recurrent Neural Networks [1.2891210250935146]
We study the threats of model extraction attacks against recurrent neural networks (RNNs)
We discuss whether a model with a higher accuracy can be extracted with a simple RNN from a long short-term memory (LSTM)
We then show that a model with a higher accuracy can be extracted efficiently, especially through configuring a loss function and a more complex architecture.
arXiv Detail & Related papers (2020-02-01T01:47:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.