Knowledge of Knowledge: Exploring Known-Unknowns Uncertainty with Large Language Models
- URL: http://arxiv.org/abs/2305.13712v3
- Date: Tue, 2 Jul 2024 01:39:50 GMT
- Title: Knowledge of Knowledge: Exploring Known-Unknowns Uncertainty with Large Language Models
- Authors: Alfonso Amayuelas, Kyle Wong, Liangming Pan, Wenhu Chen, William Wang,
- Abstract summary: We focus on addressing known-unknown questions, characterized by high uncertainty due to the absence of definitive answers.
To facilitate our study, we collect a new dataset with Known-Unknown Questions (KUQ)
We examine the performance of open-source LLMs, fine-tuned using this dataset, in distinguishing between known and unknown queries.
- Score: 44.117620571329596
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper investigates the capabilities of Large Language Models (LLMs) in the context of understanding their knowledge and uncertainty over questions. Specifically, we focus on addressing known-unknown questions, characterized by high uncertainty due to the absence of definitive answers. To facilitate our study, we collect a new dataset with Known-Unknown Questions (KUQ) and establish a categorization framework to clarify the origins of uncertainty in such queries. Subsequently, we examine the performance of open-source LLMs, fine-tuned using this dataset, in distinguishing between known and unknown queries within open-ended question-answering scenarios. The fine-tuned models demonstrated a significant improvement, achieving a considerable increase in F1-score relative to their pre-fine-tuning state. Through a comprehensive analysis, we reveal insights into the models' improved uncertainty articulation and their consequent efficacy in multi-agent debates. These findings help us understand how LLMs can be trained to identify and express uncertainty, improving our knowledge of how they understand and express complex or unclear information.
Related papers
- Understanding the Relationship between Prompts and Response Uncertainty in Large Language Models [55.332004960574004]
Large language models (LLMs) are widely used in decision-making, but their reliability, especially in critical tasks like healthcare, is not well-established.
This paper investigates how the uncertainty of responses generated by LLMs relates to the information provided in the input prompt.
We propose a prompt-response concept model that explains how LLMs generate responses and helps understand the relationship between prompts and response uncertainty.
arXiv Detail & Related papers (2024-07-20T11:19:58Z) - Know the Unknown: An Uncertainty-Sensitive Method for LLM Instruction Tuning [18.283963879468466]
Large language models (LLMs) have demonstrated remarkable capabilities but still face challenges such as hallucinations.
We propose a novel approach called uncertainty-sensitive tuning to improve models' capability to recognize the boundaries of their knowledge.
Our experimental results demonstrate that our proposed uncertainty-sensitive tuning method enhance the model's ability to identify areas of uncertainty.
arXiv Detail & Related papers (2024-06-14T14:56:04Z) - Large Language Models are Limited in Out-of-Context Knowledge Reasoning [65.72847298578071]
Large Language Models (LLMs) possess extensive knowledge and strong capabilities in performing in-context reasoning.
This paper focuses on a significant aspect of out-of-context reasoning: Out-of-Context Knowledge Reasoning (OCKR), which is to combine multiple knowledge to infer new knowledge.
arXiv Detail & Related papers (2024-06-11T15:58:59Z) - Rejection Improves Reliability: Training LLMs to Refuse Unknown Questions Using RL from Knowledge Feedback [14.120154004011084]
Large Language Models (LLMs) often generate erroneous outputs, known as hallucinations.
We present a novel alignment framework called Reinforcement Learning from Knowledge Feedback (RLKF)
arXiv Detail & Related papers (2024-03-27T08:39:56Z) - Examining LLMs' Uncertainty Expression Towards Questions Outside
Parametric Knowledge [35.067234242461545]
Large language models (LLMs) express uncertainty in situations where they lack sufficient parametric knowledge to generate reasonable responses.
This work aims to systematically investigate LLMs' behaviors in such situations, emphasizing the trade-off between honesty and helpfulness.
arXiv Detail & Related papers (2023-11-16T10:02:40Z) - Improving the Reliability of Large Language Models by Leveraging
Uncertainty-Aware In-Context Learning [76.98542249776257]
Large-scale language models often face the challenge of "hallucination"
We introduce an uncertainty-aware in-context learning framework to empower the model to enhance or reject its output in response to uncertainty.
arXiv Detail & Related papers (2023-10-07T12:06:53Z) - Do Large Language Models Know What They Don't Know? [74.65014158544011]
Large language models (LLMs) have a wealth of knowledge that allows them to excel in various Natural Language Processing (NLP) tasks.
Despite their vast knowledge, LLMs are still limited by the amount of information they can accommodate and comprehend.
This study aims to evaluate LLMs' self-knowledge by assessing their ability to identify unanswerable or unknowable questions.
arXiv Detail & Related papers (2023-05-29T15:30:13Z) - A Unified End-to-End Retriever-Reader Framework for Knowledge-based VQA [67.75989848202343]
This paper presents a unified end-to-end retriever-reader framework towards knowledge-based VQA.
We shed light on the multi-modal implicit knowledge from vision-language pre-training models to mine its potential in knowledge reasoning.
Our scheme is able to not only provide guidance for knowledge retrieval, but also drop these instances potentially error-prone towards question answering.
arXiv Detail & Related papers (2022-06-30T02:35:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.