Certifying Knowledge Comprehension in LLMs
- URL: http://arxiv.org/abs/2402.15929v3
- Date: Mon, 21 Apr 2025 23:10:55 GMT
- Title: Certifying Knowledge Comprehension in LLMs
- Authors: Isha Chaudhary, Vedaant V. Jain, Gagandeep Singh,
- Abstract summary: We introduce the first specification and certification framework for knowledge comprehension in Large Language Models (LLMs)<n>Instead of a fixed dataset, we design novel specifications that mathematically represent prohibitively large probability distributions of knowledge comprehension prompts with natural noise.<n>We apply our framework to certify SOTA LLMs in two domains: precision medicine and general question-answering.
- Score: 3.6293956720749425
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Large Language Models (LLMs) are increasingly deployed in safety-critical systems where they provide answers based on in-context information derived from knowledge bases. As LLMs are increasingly envisioned as superhuman agents, their proficiency in knowledge comprehension-extracting relevant information and reasoning over it to answer questions, a key facet of human intelligence-becomes crucial. However, existing evaluations of LLMs on knowledge comprehension are typically conducted on small test sets, but these datasets represent only a tiny fraction of the vast number of possible queries. Simple empirical evaluations on these limited test sets raises concerns about the reliability and generalizability of the results. In this work, we introduce the first specification and certification framework for knowledge comprehension in LLMs, providing formal probabilistic guarantees for reliability. Instead of a fixed dataset, we design novel specifications that mathematically represent prohibitively large probability distributions of knowledge comprehension prompts with natural noise, using knowledge graphs. From these specifications, we generate quantitative certificates that offer high-confidence, tight bounds on the probability that a given LLM correctly answers any question drawn from the specification distribution. We apply our framework to certify SOTA LLMs in two domains: precision medicine and general question-answering. Our results reveal previously unrecognized vulnerabilities in SOTA LLMs due to natural noise in the prompts. Additionally, we establish performance hierarchies with formal guarantees among the SOTA LLMs, particularly in the context of precision medicine question-answering.
Related papers
- UAlign: Leveraging Uncertainty Estimations for Factuality Alignment on Large Language Models [41.67393607081513]
Large Language Models (LLMs) often struggle to accurately express the factual knowledge they possess.
We propose the UAlign framework, which leverages Uncertainty estimations to represent knowledge boundaries.
We show that the proposed UAlign can significantly enhance the LLMs' capacities to confidently answer known questions.
arXiv Detail & Related papers (2024-12-16T14:14:27Z) - Understanding the Relationship between Prompts and Response Uncertainty in Large Language Models [55.332004960574004]
Large language models (LLMs) are widely used in decision-making, but their reliability, especially in critical tasks like healthcare, is not well-established.
This paper investigates how the uncertainty of responses generated by LLMs relates to the information provided in the input prompt.
We propose a prompt-response concept model that explains how LLMs generate responses and helps understand the relationship between prompts and response uncertainty.
arXiv Detail & Related papers (2024-07-20T11:19:58Z) - How Reliable are LLMs as Knowledge Bases? Re-thinking Facutality and Consistency [60.25969380388974]
Large Language Models (LLMs) are increasingly explored as knowledge bases (KBs)
Current evaluation methods focus too narrowly on knowledge retention, overlooking other crucial criteria for reliable performance.
We propose new criteria and metrics to quantify factuality and consistency, leading to a final reliability score.
arXiv Detail & Related papers (2024-07-18T15:20:18Z) - Large Language Models are Limited in Out-of-Context Knowledge Reasoning [65.72847298578071]
Large Language Models (LLMs) possess extensive knowledge and strong capabilities in performing in-context reasoning.
This paper focuses on a significant aspect of out-of-context reasoning: Out-of-Context Knowledge Reasoning (OCKR), which is to combine multiple knowledge to infer new knowledge.
arXiv Detail & Related papers (2024-06-11T15:58:59Z) - What's in an embedding? Would a rose by any embedding smell as sweet? [0.0]
Large Language Models (LLMs) are often criticized for lacking true "understanding" and the ability to "reason" with their knowledge.
We suggest that LLMs do develop a kind of empirical "understanding" that is "geometry"-like, which seems adequate for a range of applications in NLP.
To overcome these limitations, we suggest that LLMs should be integrated with an "algebraic" representation of knowledge that includes symbolic AI elements.
arXiv Detail & Related papers (2024-06-11T01:10:40Z) - PertEval: Unveiling Real Knowledge Capacity of LLMs with Knowledge-Invariant Perturbations [22.011216436252845]
We present PertEval, a toolkit for probing large language models' knowledge capacity.
PertEval employs human-like restatement techniques to generate on-the-fly test samples from static benchmarks.
Our findings provide insights for advancing more robust and genuinely knowledgeable LLMs.
arXiv Detail & Related papers (2024-05-30T06:38:32Z) - CLAMBER: A Benchmark of Identifying and Clarifying Ambiguous Information Needs in Large Language Models [60.59638232596912]
We introduce CLAMBER, a benchmark for evaluating large language models (LLMs)
Building upon the taxonomy, we construct 12K high-quality data to assess the strengths, weaknesses, and potential risks of various off-the-shelf LLMs.
Our findings indicate the limited practical utility of current LLMs in identifying and clarifying ambiguous user queries.
arXiv Detail & Related papers (2024-05-20T14:34:01Z) - Prompting Large Language Models with Knowledge Graphs for Question Answering Involving Long-tail Facts [50.06633829833144]
Large Language Models (LLMs) are effective in performing various NLP tasks, but struggle to handle tasks that require extensive, real-world knowledge.
We propose a benchmark that requires knowledge of long-tail facts for answering the involved questions.
Our experiments show that LLMs alone struggle with answering these questions, especially when the long-tail level is high or rich knowledge is required.
arXiv Detail & Related papers (2024-05-10T15:10:20Z) - FAC$^2$E: Better Understanding Large Language Model Capabilities by Dissociating Language and Cognition [56.76951887823882]
Large language models (LLMs) are primarily evaluated by overall performance on various text understanding and generation tasks.
We present FAC$2$E, a framework for Fine-grAined and Cognition-grounded LLMs' Capability Evaluation.
arXiv Detail & Related papers (2024-02-29T21:05:37Z) - Can Language Models Act as Knowledge Bases at Scale? [24.99538360485476]
Large language models (LLMs) have demonstrated remarkable proficiency in understanding and generating responses to complex queries.
Our research investigates whether LLMs can effectively store, recall, and reason with knowledge on a large scale comparable to latest knowledge bases (KBs) such as Wikidata.
arXiv Detail & Related papers (2024-02-22T04:20:14Z) - Systematic Assessment of Factual Knowledge in Large Language Models [48.75961313441549]
This paper proposes a framework to assess the factual knowledge of large language models (LLMs) by leveraging knowledge graphs (KGs)
Our framework automatically generates a set of questions and expected answers from the facts stored in a given KG, and then evaluates the accuracy of LLMs in answering these questions.
arXiv Detail & Related papers (2023-10-18T00:20:50Z) - KGQuiz: Evaluating the Generalization of Encoded Knowledge in Large Language Models [39.554274096542244]
KGQuiz is a knowledge-intensive benchmark to investigate the knowledge generalization abilities of large language models.
We evaluate 10 open-source and black-box LLMs on the KGQuiz benchmark across the five knowledge-intensive tasks and knowledge domains.
We envision KGQuiz as a testbed to analyze such nuanced variations in performance across domains and task formats.
arXiv Detail & Related papers (2023-10-15T04:00:36Z) - Investigating the Factual Knowledge Boundary of Large Language Models with Retrieval Augmentation [109.8527403904657]
We show that large language models (LLMs) possess unwavering confidence in their knowledge and cannot handle the conflict between internal and external knowledge well.
Retrieval augmentation proves to be an effective approach in enhancing LLMs' awareness of knowledge boundaries.
We propose a simple method to dynamically utilize supporting documents with our judgement strategy.
arXiv Detail & Related papers (2023-07-20T16:46:10Z) - KoLA: Carefully Benchmarking World Knowledge of Large Language Models [87.96683299084788]
We construct a Knowledge-oriented LLM Assessment benchmark (KoLA)
We mimic human cognition to form a four-level taxonomy of knowledge-related abilities, covering $19$ tasks.
We use both Wikipedia, a corpus prevalently pre-trained by LLMs, along with continuously collected emerging corpora, to evaluate the capacity to handle unseen data and evolving knowledge.
arXiv Detail & Related papers (2023-06-15T17:20:46Z) - Do Large Language Models Know What They Don't Know? [74.65014158544011]
Large language models (LLMs) have a wealth of knowledge that allows them to excel in various Natural Language Processing (NLP) tasks.
Despite their vast knowledge, LLMs are still limited by the amount of information they can accommodate and comprehend.
This study aims to evaluate LLMs' self-knowledge by assessing their ability to identify unanswerable or unknowable questions.
arXiv Detail & Related papers (2023-05-29T15:30:13Z) - Knowledge of Knowledge: Exploring Known-Unknowns Uncertainty with Large Language Models [44.117620571329596]
We focus on addressing known-unknown questions, characterized by high uncertainty due to the absence of definitive answers.
To facilitate our study, we collect a new dataset with Known-Unknown Questions (KUQ)
We examine the performance of open-source LLMs, fine-tuned using this dataset, in distinguishing between known and unknown queries.
arXiv Detail & Related papers (2023-05-23T05:59:21Z) - Knowledge Rumination for Pre-trained Language Models [77.55888291165462]
We propose a new paradigm dubbed Knowledge Rumination to help the pre-trained language model utilize related latent knowledge without retrieving it from the external corpus.
We apply the proposed knowledge rumination to various language models, including RoBERTa, DeBERTa, and GPT-3.
arXiv Detail & Related papers (2023-05-15T15:47:09Z) - KMIR: A Benchmark for Evaluating Knowledge Memorization, Identification
and Reasoning Abilities of Language Models [28.82149012250609]
We propose a benchmark, named Knowledge Memorization, Identification, and Reasoning test (KMIR)
KMIR covers 3 types of knowledge, including general knowledge, domain-specific knowledge, and commonsense, and provides 184,348 well-designed questions.
Preliminary experiments with various representative pre-training language models on KMIR reveal many interesting phenomenons.
arXiv Detail & Related papers (2022-02-28T03:52:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.