Online Open-set Semi-supervised Object Detection with Dual Competing Head
- URL: http://arxiv.org/abs/2305.13802v3
- Date: Fri, 22 Mar 2024 01:17:25 GMT
- Title: Online Open-set Semi-supervised Object Detection with Dual Competing Head
- Authors: Zerun Wang, Ling Xiao, Liuyu Xiang, Zhaotian Weng, Toshihiko Yamasaki,
- Abstract summary: This paper proposes an end-to-end online OSSOD framework that improves performance and efficiency.
Experimental results show that our method achieves state-of-the-art performance on several OSSOD benchmarks compared to existing methods.
- Score: 23.413809406076385
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Open-set semi-supervised object detection (OSSOD) task leverages practical open-set unlabeled datasets that comprise both in-distribution (ID) and out-of-distribution (OOD) instances for conducting semi-supervised object detection (SSOD). The main challenge in OSSOD is distinguishing and filtering the OOD instances (i.e., outliers) during pseudo-labeling since OODs will affect the performance. The only OSSOD work employs an additional offline OOD detection network trained solely with labeled data to solve this problem. However, the limited labeled data restricts the potential for improvement. Meanwhile, the offline strategy results in low efficiency. To alleviate these issues, this paper proposes an end-to-end online OSSOD framework that improves performance and efficiency: 1) We propose a semi-supervised outlier filtering method that more effectively filters the OOD instances using both labeled and unlabeled data. 2) We propose a threshold-free Dual Competing OOD head that further improves the performance by suppressing the error accumulation during semi-supervised outlier filtering. 3) Our proposed method is an online end-to-end trainable OSSOD framework. Experimental results show that our method achieves state-of-the-art performance on several OSSOD benchmarks compared to existing methods. Moreover, additional experiments show that our method is more efficient and can be easily applied to different SSOD frameworks to boost their performance.
Related papers
- GradStop: Exploring Training Dynamics in Unsupervised Outlier Detection through Gradient Cohesion [3.5510589740276424]
Unsupervised Outlier Detection (UOD) is a critical task in data mining and machine learning, aiming to identify instances that significantly deviate from the majority.
Without any label, deep UOD methods struggle with the misalignment between the model's direct optimization goal and the final performance goal of Outlier Detection task.
This paper proposes an early stopping algorithm to optimize the training of deep UOD models, ensuring they perform optimally in Outlier Detection task.
arXiv Detail & Related papers (2024-12-11T16:07:58Z) - Resultant: Incremental Effectiveness on Likelihood for Unsupervised Out-of-Distribution Detection [63.93728560200819]
Unsupervised out-of-distribution (U-OOD) detection is to identify data samples with a detector trained solely on unlabeled in-distribution (ID) data.
Recent studies have developed various detectors based on DGMs to move beyond likelihood.
We apply two techniques for each direction, specifically post-hoc prior and dataset entropy-mutual calibration.
Experimental results demonstrate that the Resultant could be a new state-of-the-art U-OOD detector.
arXiv Detail & Related papers (2024-09-05T02:58:13Z) - A Unified Approach Towards Active Learning and Out-of-Distribution Detection [44.29827026888824]
We introduce SISOM as the first unified solution for both AL and OOD detection.
By leveraging feature space distance metrics SISOM combines the strengths of the currently independent tasks to solve both effectively.
In AL, SISOM outperforms others and delivers top-1 performance in three benchmarks.
arXiv Detail & Related papers (2024-05-18T17:02:57Z) - SCOD: From Heuristics to Theory [4.512926716151403]
This paper addresses the problem of designing reliable prediction models that abstain from predictions when faced with uncertain or out-of-distribution samples.
We make three key contributions to Selective Classification in the presence of Out-of-Distribution data (SCOD)
arXiv Detail & Related papers (2024-03-25T16:36:13Z) - Fast Decision Boundary based Out-of-Distribution Detector [7.04686607977352]
Out-of-Distribution (OOD) detection is essential for the safe deployment of AI systems.
Existing feature space methods, while effective, often incur significant computational overhead.
We propose a computationally-efficient OOD detector without using auxiliary models.
arXiv Detail & Related papers (2023-12-15T19:50:32Z) - Semi-Supervised Object Detection with Uncurated Unlabeled Data for
Remote Sensing Images [16.660668160785615]
Semi-supervised object detection (SSOD) methods tackle this issue by generating pseudo-labels for the unlabeled data.
However, real-world situations introduce the possibility of out-of-distribution (OOD) samples being mixed with in-distribution (ID) samples within the unlabeled dataset.
We propose Open-Set Semi-Supervised Object Detection (OSSOD) on uncurated unlabeled data.
arXiv Detail & Related papers (2023-10-09T07:59:31Z) - AUTO: Adaptive Outlier Optimization for Online Test-Time OOD Detection [81.49353397201887]
Out-of-distribution (OOD) detection is crucial to deploying machine learning models in open-world applications.
We introduce a novel paradigm called test-time OOD detection, which utilizes unlabeled online data directly at test time to improve OOD detection performance.
We propose adaptive outlier optimization (AUTO), which consists of an in-out-aware filter, an ID memory bank, and a semantically-consistent objective.
arXiv Detail & Related papers (2023-03-22T02:28:54Z) - Anti-Exploration by Random Network Distillation [63.04360288089277]
We show that a naive choice of conditioning for the Random Network Distillation (RND) is not discriminative enough to be used as an uncertainty estimator.
We show that this limitation can be avoided with conditioning based on Feature-wise Linear Modulation (FiLM)
We evaluate it on the D4RL benchmark, showing that it is capable of achieving performance comparable to ensemble-based methods and outperforming ensemble-free approaches by a wide margin.
arXiv Detail & Related papers (2023-01-31T13:18:33Z) - Open-Set Semi-Supervised Object Detection [43.464223594166654]
Recent developments for Semi-Supervised Object Detection (SSOD) have shown the promise of leveraging unlabeled data to improve an object detector.
We consider a more practical yet challenging problem, Open-Set Semi-Supervised Object Detection (OSSOD)
Our proposed framework effectively addresses the semantic expansion issue and shows consistent improvements on many OSSOD benchmarks.
arXiv Detail & Related papers (2022-08-29T17:04:30Z) - W2N:Switching From Weak Supervision to Noisy Supervision for Object
Detection [64.10643170523414]
We propose a novel WSOD framework with a new paradigm that switches from weak supervision to noisy supervision (W2N)
In the localization adaptation module, we propose a regularization loss to reduce the proportion of discriminative parts in original pseudo ground-truths.
Our W2N outperforms all existing pure WSOD methods and transfer learning methods.
arXiv Detail & Related papers (2022-07-25T12:13:48Z) - SIOD: Single Instance Annotated Per Category Per Image for Object
Detection [67.64774488115299]
We propose the Single Instance annotated Object Detection (SIOD), requiring only one instance annotation for each existing category in an image.
Degraded from inter-task (WSOD) or inter-image (SSOD) discrepancies to the intra-image discrepancy, SIOD provides more reliable and rich prior knowledge for mining the rest of unlabeled instances.
Under the SIOD setting, we propose a simple yet effective framework, termed Dual-Mining (DMiner), which consists of a Similarity-based Pseudo Label Generating module (SPLG) and a Pixel-level Group Contrastive Learning module (PGCL)
arXiv Detail & Related papers (2022-03-29T08:49:51Z) - WSSOD: A New Pipeline for Weakly- and Semi-Supervised Object Detection [75.80075054706079]
We propose a weakly- and semi-supervised object detection framework (WSSOD)
An agent detector is first trained on a joint dataset and then used to predict pseudo bounding boxes on weakly-annotated images.
The proposed framework demonstrates remarkable performance on PASCAL-VOC and MSCOCO benchmark, achieving a high performance comparable to those obtained in fully-supervised settings.
arXiv Detail & Related papers (2021-05-21T11:58:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.