SCOD: From Heuristics to Theory
- URL: http://arxiv.org/abs/2403.16916v1
- Date: Mon, 25 Mar 2024 16:36:13 GMT
- Title: SCOD: From Heuristics to Theory
- Authors: Vojtech Franc, Jakub Paplham, Daniel Prusa,
- Abstract summary: This paper addresses the problem of designing reliable prediction models that abstain from predictions when faced with uncertain or out-of-distribution samples.
We make three key contributions to Selective Classification in the presence of Out-of-Distribution data (SCOD)
- Score: 4.512926716151403
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper addresses the problem of designing reliable prediction models that abstain from predictions when faced with uncertain or out-of-distribution samples - a recently proposed problem known as Selective Classification in the presence of Out-of-Distribution data (SCOD). We make three key contributions to SCOD. Firstly, we demonstrate that the optimal SCOD strategy involves a Bayes classifier for in-distribution (ID) data and a selector represented as a stochastic linear classifier in a 2D space, using i) the conditional risk of the ID classifier, and ii) the likelihood ratio of ID and out-of-distribution (OOD) data as input. This contrasts with suboptimal strategies from current OOD detection methods and the Softmax Information Retaining Combination (SIRC), specifically developed for SCOD. Secondly, we establish that in a distribution-free setting, the SCOD problem is not Probably Approximately Correct learnable when relying solely on an ID data sample. Third, we introduce POSCOD, a simple method for learning a plugin estimate of the optimal SCOD strategy from both an ID data sample and an unlabeled mixture of ID and OOD data. Our empirical results confirm the theoretical findings and demonstrate that our proposed method, POSCOD, out performs existing OOD methods in effectively addressing the SCOD problem.
Related papers
- Margin-bounded Confidence Scores for Out-of-Distribution Detection [2.373572816573706]
We propose a novel method called Margin bounded Confidence Scores (MaCS) to address the nontrivial OOD detection problem.
MaCS enlarges the disparity between ID and OOD scores, which in turn makes the decision boundary more compact.
Experiments on various benchmark datasets for image classification tasks demonstrate the effectiveness of the proposed method.
arXiv Detail & Related papers (2024-09-22T05:40:25Z) - Meta-learning for Positive-unlabeled Classification [40.11462237689747]
The proposed method minimizes the test classification risk after the model is adapted to PU data.
The method embeds each instance into a task-specific space using neural networks.
We empirically show that the proposed method outperforms existing methods with one synthetic and three real-world datasets.
arXiv Detail & Related papers (2024-06-06T01:50:01Z) - Score-based Source Separation with Applications to Digital Communication
Signals [72.6570125649502]
We propose a new method for separating superimposed sources using diffusion-based generative models.
Motivated by applications in radio-frequency (RF) systems, we are interested in sources with underlying discrete nature.
Our method can be viewed as a multi-source extension to the recently proposed score distillation sampling scheme.
arXiv Detail & Related papers (2023-06-26T04:12:40Z) - Augmenting Softmax Information for Selective Classification with
Out-of-Distribution Data [7.221206118679026]
We show that existing post-hoc methods perform quite differently compared to when evaluated only on OOD detection.
We propose a novel method for SCOD, Softmax Information Retaining Combination (SIRC), that augments softmax-based confidence scores with feature-agnostic information.
Experiments on a wide variety of ImageNet-scale datasets and convolutional neural network architectures show that SIRC is able to consistently match or outperform the baseline for SCOD.
arXiv Detail & Related papers (2022-07-15T14:39:57Z) - Distributed Dynamic Safe Screening Algorithms for Sparse Regularization [73.85961005970222]
We propose a new distributed dynamic safe screening (DDSS) method for sparsity regularized models and apply it on shared-memory and distributed-memory architecture respectively.
We prove that the proposed method achieves the linear convergence rate with lower overall complexity and can eliminate almost all the inactive features in a finite number of iterations almost surely.
arXiv Detail & Related papers (2022-04-23T02:45:55Z) - Leveraging Unlabeled Data to Predict Out-of-Distribution Performance [63.740181251997306]
Real-world machine learning deployments are characterized by mismatches between the source (training) and target (test) distributions.
In this work, we investigate methods for predicting the target domain accuracy using only labeled source data and unlabeled target data.
We propose Average Thresholded Confidence (ATC), a practical method that learns a threshold on the model's confidence, predicting accuracy as the fraction of unlabeled examples.
arXiv Detail & Related papers (2022-01-11T23:01:12Z) - ECOD: Unsupervised Outlier Detection Using Empirical Cumulative
Distribution Functions [12.798256312657136]
Outlier detection refers to the identification of data points that deviate from a general data distribution.
We present ECOD (Empirical-Cumulative-distribution-based Outlier Detection), which is inspired by the fact that outliers are often the "rare events" that appear in the tails of a distribution.
arXiv Detail & Related papers (2022-01-02T17:28:35Z) - Learning while Respecting Privacy and Robustness to Distributional
Uncertainties and Adversarial Data [66.78671826743884]
The distributionally robust optimization framework is considered for training a parametric model.
The objective is to endow the trained model with robustness against adversarially manipulated input data.
Proposed algorithms offer robustness with little overhead.
arXiv Detail & Related papers (2020-07-07T18:25:25Z) - Decomposed Adversarial Learned Inference [118.27187231452852]
We propose a novel approach, Decomposed Adversarial Learned Inference (DALI)
DALI explicitly matches prior and conditional distributions in both data and code spaces.
We validate the effectiveness of DALI on the MNIST, CIFAR-10, and CelebA datasets.
arXiv Detail & Related papers (2020-04-21T20:00:35Z) - Generalized ODIN: Detecting Out-of-distribution Image without Learning
from Out-of-distribution Data [87.61504710345528]
We propose two strategies for freeing a neural network from tuning with OoD data, while improving its OoD detection performance.
We specifically propose to decompose confidence scoring as well as a modified input pre-processing method.
Our further analysis on a larger scale image dataset shows that the two types of distribution shifts, specifically semantic shift and non-semantic shift, present a significant difference.
arXiv Detail & Related papers (2020-02-26T04:18:25Z) - Towards Out-of-Distribution Detection with Divergence Guarantee in Deep
Generative Models [22.697643259435115]
Deep generative models may assign higher likelihood to out-of-distribution (OOD) data than in-distribution (ID) data.
We prove theorems to investigate the divergences in flow-based model.
We propose two group anomaly detection methods.
arXiv Detail & Related papers (2020-02-09T09:54:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.