Practical Phase-Coding Side-Channel-Secure Quantum Key Distribution
- URL: http://arxiv.org/abs/2305.13861v2
- Date: Mon, 29 May 2023 01:05:31 GMT
- Title: Practical Phase-Coding Side-Channel-Secure Quantum Key Distribution
- Authors: Yang-Guang Shan, Zhen-Qiang Yin, Shuang Wang, Wei Chen, De-Yong He,
Guang-Can Guo, Zheng-Fu Han
- Abstract summary: A new QKD protocol called phasecoding side-channel-secure channels (PC-SCS) protocol is proposed.
A finite-key security analysis against coherent attack of the new protocol is given.
A practical transmission distance of 300 km can be realized by the PC-SCS protocol.
- Score: 8.464021993320305
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: All kinds of device loopholes give rise to a great obstacle to practical
secure quantum key distribution (QKD). In this article, inspired by the
original side-channel-secure protocol [Physical Review Applied 12, 054034
(2019)], a new QKD protocol called phase-coding side-channel-secure (PC-SCS)
protocol is proposed. This protocol can be immune to all uncorrelated side
channels of the source part and all loopholes of the measurement side. A
finite-key security analysis against coherent attack of the new protocol is
given. The proposed protocol only requires modulation of two phases, which can
avoid the challenge of preparing perfect vacuum states. Numerical simulation
shows that a practical transmission distance of 300 km can be realized by the
PC-SCS protocol.
Related papers
- Practical hybrid PQC-QKD protocols with enhanced security and performance [44.8840598334124]
We develop hybrid protocols by which QKD and PQC inter-operate within a joint quantum-classical network.
In particular, we consider different hybrid designs that may offer enhanced speed and/or security over the individual performance of either approach.
arXiv Detail & Related papers (2024-11-02T00:02:01Z) - Experimental Simulation of Two Pulses and Three Pulses Coherent One Way Quantum Key Distribution Protocol in Noisy/Noiseless and Wired/Wireless Environment [1.8638865257327277]
Coherent One Way (COW) protocol is one of the most famous protocol because of its ease of hardware deployment.
We demonstrate the encoding as well as decoding portions of the protocols under both noisy and noiseless scenario.
arXiv Detail & Related papers (2024-09-23T11:02:52Z) - Efficient Device-Independent Quantum Key Distribution [4.817429789586127]
Device-independent quantum key distribution (DIQKD) is a key distribution scheme whose security is based on the laws of quantum physics.
We propose an efficient device-independent quantum key distribution protocol in which one participant prepares states and transmits them to another participant.
arXiv Detail & Related papers (2023-11-16T13:01:34Z) - Practical quantum secure direct communication with squeezed states [55.41644538483948]
We report the first table-top experimental demonstration of a CV-QSDC system and assess its security.
This realization paves the way into future threat-less quantum metropolitan networks, compatible with coexisting advanced wavelength division multiplexing (WDM) systems.
arXiv Detail & Related papers (2023-06-25T19:23:42Z) - Single-photon-memory measurement-device-independent quantum secure
direct communication [63.75763893884079]
Quantum secure direct communication (QSDC) uses the quantum channel to transmit information reliably and securely.
In order to eliminate the security loopholes resulting from practical detectors, the measurement-device-independent (MDI) QSDC protocol has been proposed.
We propose a single-photon-memory MDI QSDC protocol (SPMQC) for dispensing with high-performance quantum memory.
arXiv Detail & Related papers (2022-12-12T02:23:57Z) - Data post-processing for the one-way heterodyne protocol under
composable finite-size security [62.997667081978825]
We study the performance of a practical continuous-variable (CV) quantum key distribution protocol.
We focus on the Gaussian-modulated coherent-state protocol with heterodyne detection in a high signal-to-noise ratio regime.
This allows us to study the performance for practical implementations of the protocol and optimize the parameters connected to the steps above.
arXiv Detail & Related papers (2022-05-20T12:37:09Z) - Discrete-variable quantum key distribution with homodyne detection [14.121646217925441]
We propose a protocol that combines the simplicity of quantum state preparation in DV-QKD together with the cost-effective and high-bandwidth of homodyne detectors used in CV-QKD.
Our simulation suggests that the protocol is suitable for secure and high-speed practical key distribution over distances.
arXiv Detail & Related papers (2021-09-01T17:12:28Z) - Composably secure data processing for Gaussian-modulated continuous
variable quantum key distribution [58.720142291102135]
Continuous-variable quantum key distribution (QKD) employs the quadratures of a bosonic mode to establish a secret key between two remote parties.
We consider a protocol with homodyne detection in the general setting of composable finite-size security.
In particular, we analyze the high signal-to-noise regime which requires the use of high-rate (non-binary) low-density parity check codes.
arXiv Detail & Related papers (2021-03-30T18:02:55Z) - Round-robin differential phase-time-shifting protocol for quantum key
distribution: theory and experiment [58.03659958248968]
Quantum key distribution (QKD) allows the establishment of common cryptographic keys among distant parties.
Recently, a QKD protocol that circumvents the need for monitoring signal disturbance, has been proposed and demonstrated in initial experiments.
We derive the security proofs of the round-robin differential phase-time-shifting protocol in the collective attack scenario.
Our results show that the RRDPTS protocol can achieve higher secret key rate in comparison with the RRDPS, in the condition of high quantum bit error rate.
arXiv Detail & Related papers (2021-03-15T15:20:09Z) - Practical Quantum Key Distribution Secure Against Side-Channels [0.0]
We introduce a measurement-device-independent (MDI) QKD type of protocol based on the transmission of coherent light.
We prove its security against any possible device imperfection and/or side-channel at the transmitters' side.
The performance of the protocol is comparable to other MDI-QKD type of protocols which disregard the effect of several side-channels.
arXiv Detail & Related papers (2020-07-07T11:56:04Z) - A polarization quantum key distribution scheme based on phase matching [0.0]
The Quantum Key Distribution protocol can encode a single quantum state and implements an information-theoretically secure key distribution protocol in communication.
This paper successfully gives the polarization scheme of this PM-QKD protocol, the bases in the polarization scheme are arbitrary, and eliminates detector side channel attacks.
The simulation results show that our protocol is superior to the BB84 protocol in terms of transmission distance under the fixed key rate.
arXiv Detail & Related papers (2020-03-02T10:33:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.