Deep-Learning-Aided Alternating Least Squares for Tensor CP Decomposition and Its Application to Massive MIMO Channel Estimation
- URL: http://arxiv.org/abs/2305.13947v2
- Date: Wed, 20 Nov 2024 08:19:15 GMT
- Title: Deep-Learning-Aided Alternating Least Squares for Tensor CP Decomposition and Its Application to Massive MIMO Channel Estimation
- Authors: Xiao Gong, Wei Chen, Bo Ai, Geert Leus,
- Abstract summary: To achieve accurate and low-latency channel estimation, good and fast CP decomposition algorithms are desired.
The CP alternating least squares (CPALS) is the workhorse algorithm for calculating the CPD.
This paper proposes a deep-learning-aided CPALS (DL-CPALS) method that uses a deep neural network (DNN)
Experimental results demonstrate the significant improvements of the proposed method in terms of both speed and accuracy for CPD and channel estimation.
- Score: 31.14824776920284
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: CANDECOMP/PARAFAC (CP) decomposition is the mostly used model to formulate the received tensor signal in a massive MIMO system, as the receiver generally sums the components from different paths or users. To achieve accurate and low-latency channel estimation, good and fast CP decomposition (CPD) algorithms are desired. The CP alternating least squares (CPALS) is the workhorse algorithm for calculating the CPD. However, its performance depends on the initializations, and good starting values can lead to more efficient solutions. Existing initialization strategies are decoupled from the CPALS and are not necessarily favorable for solving the CPD. This paper proposes a deep-learning-aided CPALS (DL-CPALS) method that uses a deep neural network (DNN) to generate favorable initializations. The proposed DL-CPALS integrates the DNN and CPALS to a model-based deep learning paradigm, where it trains the DNN to generate an initialization that facilitates fast and accurate CPD. Moreover, benefiting from the CP low-rankness, the proposed method is trained using noisy data and does not require paired clean data. The proposed DL-CPALS is applied to millimeter wave MIMO-OFDM channel estimation. Experimental results demonstrate the significant improvements of the proposed method in terms of both speed and accuracy for CPD and channel estimation.
Related papers
- Joint Transmit and Pinching Beamforming for Pinching Antenna Systems (PASS): Optimization-Based or Learning-Based? [89.05848771674773]
A novel antenna system ()-enabled downlink multi-user multiple-input single-output (MISO) framework is proposed.
It consists of multiple waveguides, which equip numerous low-cost antennas, named (PAs)
The positions of PAs can be reconfigured to both spanning large-scale path and space.
arXiv Detail & Related papers (2025-02-12T18:54:10Z) - Improving Uncertainty Quantification of Deep Classifiers via
Neighborhood Conformal Prediction: Novel Algorithm and Theoretical Analysis [30.0231328500976]
Conformal prediction (CP) is a principled framework for uncertainty quantification of deep models.
This paper proposes a novel algorithm referred to as Neighborhood Conformal Prediction (NCP) to improve the efficiency of uncertainty quantification.
We show that NCP leads to significant reduction in prediction set size over prior CP methods.
arXiv Detail & Related papers (2023-03-19T15:56:50Z) - DDPG-Driven Deep-Unfolding with Adaptive Depth for Channel Estimation
with Sparse Bayesian Learning [23.158142411929322]
We first develop a framework of deep deterministic policy gradient (DDPG)-driven deep-unfolding with adaptive depth for different inputs.
Specifically, the framework is employed to deal with the channel estimation problem in massive multiple-input multiple-output systems.
arXiv Detail & Related papers (2022-01-20T22:35:42Z) - Two-Timescale End-to-End Learning for Channel Acquisition and Hybrid
Precoding [94.40747235081466]
We propose an end-to-end deep learning-based joint transceiver design algorithm for millimeter wave (mmWave) massive multiple-input multiple-output (MIMO) systems.
We develop a DNN architecture that maps the received pilots into feedback bits at the receiver, and then further maps the feedback bits into the hybrid precoder at the transmitter.
arXiv Detail & Related papers (2021-10-22T20:49:02Z) - Learning to Perform Downlink Channel Estimation in Massive MIMO Systems [72.76968022465469]
We study downlink (DL) channel estimation in a Massive multiple-input multiple-output (MIMO) system.
A common approach is to use the mean value as the estimate, motivated by channel hardening.
We propose two novel estimation methods.
arXiv Detail & Related papers (2021-09-06T13:42:32Z) - Neural Calibration for Scalable Beamforming in FDD Massive MIMO with
Implicit Channel Estimation [10.775558382613077]
Channel estimation and beamforming play critical roles in frequency-division duplexing (FDD) massive multiple-input multiple-output (MIMO) systems.
We propose a deep learning-based approach that directly optimize the beamformers at the base station according to the received uplink pilots.
A neural calibration method is proposed to improve the scalability of the end-to-end design.
arXiv Detail & Related papers (2021-08-03T14:26:14Z) - Learning to Estimate RIS-Aided mmWave Channels [50.15279409856091]
We focus on uplink cascaded channel estimation, where known and fixed base station combining and RIS phase control matrices are considered for collecting observations.
To boost the estimation performance and reduce the training overhead, the inherent channel sparsity of mmWave channels is leveraged in the deep unfolding method.
It is verified that the proposed deep unfolding network architecture can outperform the least squares (LS) method with a relatively smaller training overhead and online computational complexity.
arXiv Detail & Related papers (2021-07-27T06:57:56Z) - A Meta-Learning Approach to the Optimal Power Flow Problem Under
Topology Reconfigurations [69.73803123972297]
We propose a DNN-based OPF predictor that is trained using a meta-learning (MTL) approach.
The developed OPF-predictor is validated through simulations using benchmark IEEE bus systems.
arXiv Detail & Related papers (2020-12-21T17:39:51Z) - Temporal Attention-Augmented Graph Convolutional Network for Efficient
Skeleton-Based Human Action Recognition [97.14064057840089]
Graphal networks (GCNs) have been very successful in modeling non-Euclidean data structures.
Most GCN-based action recognition methods use deep feed-forward networks with high computational complexity to process all skeletons in an action.
We propose a temporal attention module (TAM) for increasing the efficiency in skeleton-based action recognition.
arXiv Detail & Related papers (2020-10-23T08:01:55Z) - Tune smarter not harder: A principled approach to tuning learning rates
for shallow nets [13.203765985718201]
principled approach to choosing the learning rate is proposed for shallow feedforward neural networks.
It is shown through simulations that the proposed search method significantly outperforms the existing tuning methods.
arXiv Detail & Related papers (2020-03-22T09:38:35Z) - Belief Propagation Reloaded: Learning BP-Layers for Labeling Problems [83.98774574197613]
We take one of the simplest inference methods, a truncated max-product Belief propagation, and add what is necessary to make it a proper component of a deep learning model.
This BP-Layer can be used as the final or an intermediate block in convolutional neural networks (CNNs)
The model is applicable to a range of dense prediction problems, is well-trainable and provides parameter-efficient and robust solutions in stereo, optical flow and semantic segmentation.
arXiv Detail & Related papers (2020-03-13T13:11:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.