論文の概要: From Model-Based to Data-Driven Simulation: Challenges and Trends in
Autonomous Driving
- arxiv url: http://arxiv.org/abs/2305.13960v3
- Date: Mon, 31 Jul 2023 11:41:18 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-01 22:47:56.019868
- Title: From Model-Based to Data-Driven Simulation: Challenges and Trends in
Autonomous Driving
- Title(参考訳): モデルベースからデータ駆動シミュレーションへ:自律運転の課題と動向
- Authors: Ferdinand M\"utsch, Helen Gremmelmaier, Nicolas Becker, Daniel
Bogdoll, Marc Ren\'e Zofka, J. Marius Z\"ollner
- Abstract要約: シミュレーションのさまざまな側面や種類に関して,課題の概要を述べる。
我々は、認識、行動、およびコンテンツリアリズムに関する側面と、シミュレーションの領域における一般的なハードルをカバーしている。
中でも,モデルベースシミュレーションの代替として,データ駆動型,生成的アプローチ,高忠実度データ合成の傾向が注目されている。
- 参考スコア(独自算出の注目度): 26.397030011439163
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Simulation is an integral part in the process of developing autonomous
vehicles and advantageous for training, validation, and verification of driving
functions. Even though simulations come with a series of benefits compared to
real-world experiments, various challenges still prevent virtual testing from
entirely replacing physical test-drives. Our work provides an overview of these
challenges with regard to different aspects and types of simulation and
subsumes current trends to overcome them. We cover aspects around perception-,
behavior- and content-realism as well as general hurdles in the domain of
simulation. Among others, we observe a trend of data-driven, generative
approaches and high-fidelity data synthesis to increasingly replace model-based
simulation.
- Abstract(参考訳): シミュレーションは自動運転車の開発プロセスにおいて不可欠な部分であり、運転機能の訓練、検証、検証に有利である。
シミュレーションには実世界の実験と比べて様々な利点があるが、バーチャルテストが物理的なテストドライブを完全に置き換えることを防いでいる。
我々の研究は、これらの課題について様々な側面やシミュレーションのタイプについて概説し、克服する現在の傾向を仮定する。
我々は、認識、行動、およびコンテンツリアリズムに関する側面と、シミュレーションの領域における一般的なハードルをカバーしている。
モデルベースシミュレーションの代替として,データ駆動型,生成的アプローチ,高忠実度データ合成のトレンドを考察する。
関連論文リスト
- LASIL: Learner-Aware Supervised Imitation Learning For Long-term Microscopic Traffic Simulation [30.500368103677097]
微視的交通シミュレーションは、個々の車両の挙動や交通の流れに関する洞察を提供することによって、輸送工学において重要な役割を担っている。
モデルに依存する従来のシミュレータは、現実の交通環境の複雑さのために正確なシミュレーションを行うことができないことが多い。
本稿では,学習者認識による模倣学習という新しい手法を提案する。
論文 参考訳(メタデータ) (2024-03-26T11:13:35Z) - Waymax: An Accelerated, Data-Driven Simulator for Large-Scale Autonomous
Driving Research [76.93956925360638]
Waymaxは、マルチエージェントシーンにおける自動運転のための新しいデータ駆動シミュレータである。
TPU/GPUなどのハードウェアアクセラレータで完全に動作し、トレーニング用のグラフ内シミュレーションをサポートする。
我々は、一般的な模倣と強化学習アルゴリズムのスイートをベンチマークし、異なる設計決定に関するアブレーション研究を行った。
論文 参考訳(メタデータ) (2023-10-12T20:49:15Z) - Reinforcement Learning with Human Feedback for Realistic Traffic
Simulation [53.85002640149283]
効果的なシミュレーションの鍵となる要素は、人間の知識と整合した現実的な交通モデルの導入である。
本研究では,現実主義に対する人間の嗜好のニュアンスを捉えることと,多様な交通シミュレーションモデルを統合することの2つの主な課題を明らかにする。
論文 参考訳(メタデータ) (2023-09-01T19:29:53Z) - Perception Imitation: Towards Synthesis-free Simulator for Autonomous
Vehicles [45.27200446670184]
本研究では,ある知覚モデルの結果をシミュレートする知覚模倣手法を提案し,データ合成を伴わない自律走行シミュレータの新たな経路について議論する。
実験により,本手法は学習に基づく知覚モデルの振る舞いをモデル化する上で有効であることが示され,提案手法のシミュレーション経路にさらにスムーズに適用可能である。
論文 参考訳(メタデータ) (2023-04-19T01:27:02Z) - TrafficBots: Towards World Models for Autonomous Driving Simulation and
Motion Prediction [149.5716746789134]
我々は,データ駆動型交通シミュレーションを世界モデルとして定式化できることを示した。
動作予測とエンドツーエンドの運転に基づくマルチエージェントポリシーであるTrafficBotsを紹介する。
オープンモーションデータセットの実験は、TrafficBotsが現実的なマルチエージェント動作をシミュレートできることを示している。
論文 参考訳(メタデータ) (2023-03-07T18:28:41Z) - BITS: Bi-level Imitation for Traffic Simulation [38.28736985320897]
データ駆動型アプローチを採用し,実世界の走行ログから交通挙動を学習する手法を提案する。
我々は,2つの大規模運転データセットのシナリオを用いて,BITS(Bi-level Imitation for Traffic Simulation)という手法を実証的に検証した。
コアコントリビューションの一環として、さまざまな駆動データセットにまたがるデータフォーマットを統合するソフトウェアツールを開発し、オープンソース化しています。
論文 参考訳(メタデータ) (2022-08-26T02:17:54Z) - Synthetic Data-Based Simulators for Recommender Systems: A Survey [55.60116686945561]
本調査は,モデリングとシミュレーションの分野における最近のトレンドを包括的に概観することを目的としている。
まずは、シミュレーターを実装するフレームワークの開発の背後にあるモチベーションから始めます。
我々は,既存のシミュレータの機能,近似,産業的有効性に基づいて,新しい一貫した一貫した分類を行う。
論文 参考訳(メタデータ) (2022-06-22T19:33:21Z) - TrafficSim: Learning to Simulate Realistic Multi-Agent Behaviors [74.67698916175614]
リアル交通シミュレーションのためのマルチエージェント行動モデルであるTrafficSimを提案する。
特に、暗黙の潜在変数モデルを利用して、共同アクターポリシーをパラメータ化する。
TrafficSimは、多様なベースラインと比較して、より現実的で多様なトラフィックシナリオを生成します。
論文 参考訳(メタデータ) (2021-01-17T00:29:30Z) - Point Cloud Based Reinforcement Learning for Sim-to-Real and Partial
Observability in Visual Navigation [62.22058066456076]
強化学習(Reinforcement Learning, RL)は、複雑なロボットタスクを解決する強力なツールである。
RL は sim-to-real transfer problem として知られる現実世界では直接作用しない。
本稿では,点雲と環境ランダム化によって構築された観測空間を学習する手法を提案する。
論文 参考訳(メタデータ) (2020-07-27T17:46:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。