論文の概要: Perception Imitation: Towards Synthesis-free Simulator for Autonomous
Vehicles
- arxiv url: http://arxiv.org/abs/2304.09365v1
- Date: Wed, 19 Apr 2023 01:27:02 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-20 15:45:26.972744
- Title: Perception Imitation: Towards Synthesis-free Simulator for Autonomous
Vehicles
- Title(参考訳): 知覚模倣:自動運転車の合成不要シミュレータを目指して
- Authors: Xiaoliang Ju, Yiyang Sun, Yiming Hao, Yikang Li, Yu Qiao, Hongsheng Li
- Abstract要約: 本研究では,ある知覚モデルの結果をシミュレートする知覚模倣手法を提案し,データ合成を伴わない自律走行シミュレータの新たな経路について議論する。
実験により,本手法は学習に基づく知覚モデルの振る舞いをモデル化する上で有効であることが示され,提案手法のシミュレーション経路にさらにスムーズに適用可能である。
- 参考スコア(独自算出の注目度): 45.27200446670184
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a perception imitation method to simulate results of a certain
perception model, and discuss a new heuristic route of autonomous driving
simulator without data synthesis. The motivation is that original sensor data
is not always necessary for tasks such as planning and control when semantic
perception results are ready, so that simulating perception directly is more
economic and efficient. In this work, a series of evaluation methods such as
matching metric and performance of downstream task are exploited to examine the
simulation quality. Experiments show that our method is effective to model the
behavior of learning-based perception model, and can be further applied in the
proposed simulation route smoothly.
- Abstract(参考訳): 本研究では,ある知覚モデルの結果をシミュレートする知覚模倣法を提案し,データ合成を伴わない自律走行シミュレータの新しいヒューリスティックな経路について論じる。
動機は、意味認識結果の準備が整ったときの計画や制御のようなタスクには、オリジナルのセンサデータが必ずしも必要ではないため、直接知覚をシミュレートする方が経済的かつ効率的である。
本研究は,下流タスクの計測基準と性能のマッチングなどの一連の評価手法を用いて,シミュレーション品質を検証した。
実験により,本手法は学習に基づく知覚モデルの動作をモデル化するのに有効であることを示し,提案するシミュレーション経路をスムーズに適用できることを示した。
関連論文リスト
- Correlation of Software-in-the-Loop Simulation with Physical Testing for Autonomous Driving [0.0]
本稿では,社内で開発されたSILシミュレーションツールチェーンの検証事例について述べる。
テストトラックをSILシミュレーションと整合させるため,同期手法を提案する。
提案手法の有効性を示すための予備的な結果を示す。
論文 参考訳(メタデータ) (2024-06-05T08:11:10Z) - Bridging the Sim-to-Real Gap with Bayesian Inference [53.61496586090384]
データからロボットダイナミクスを学習するためのSIM-FSVGDを提案する。
我々は、ニューラルネットワークモデルのトレーニングを規則化するために、低忠実度物理プリエンスを使用します。
高性能RCレースカーシステムにおけるSIM-to-realギャップのブリッジ化におけるSIM-FSVGDの有効性を実証する。
論文 参考訳(メタデータ) (2024-03-25T11:29:32Z) - Reinforcement Learning with Human Feedback for Realistic Traffic
Simulation [53.85002640149283]
効果的なシミュレーションの鍵となる要素は、人間の知識と整合した現実的な交通モデルの導入である。
本研究では,現実主義に対する人間の嗜好のニュアンスを捉えることと,多様な交通シミュレーションモデルを統合することの2つの主な課題を明らかにする。
論文 参考訳(メタデータ) (2023-09-01T19:29:53Z) - From Model-Based to Data-Driven Simulation: Challenges and Trends in
Autonomous Driving [26.397030011439163]
シミュレーションのさまざまな側面や種類に関して,課題の概要を述べる。
我々は、認識、行動、およびコンテンツリアリズムに関する側面と、シミュレーションの領域における一般的なハードルをカバーしている。
中でも,モデルベースシミュレーションの代替として,データ駆動型,生成的アプローチ,高忠実度データ合成の傾向が注目されている。
論文 参考訳(メタデータ) (2023-05-23T11:39:23Z) - Towards Optimal Strategies for Training Self-Driving Perception Models
in Simulation [98.51313127382937]
合成ドメインのみにおけるラベルの使用に焦点を当てる。
提案手法では,ニューラル不変表現の学習方法と,シミュレータからデータをサンプリングする方法に関する理論的にインスピレーションを得た視点を導入する。
マルチセンサーデータを用いた鳥眼視車両分割作業におけるアプローチについて紹介する。
論文 参考訳(メタデータ) (2021-11-15T18:37:43Z) - A Multi-Layered Approach for Measuring the Simulation-to-Reality Gap of
Radar Perception for Autonomous Driving [0.0]
仮想テストに頼るためには、採用されているセンサーモデルを検証する必要がある。
レーダ知覚のこのシミュレーションと現実のギャップを測定するための音響手法は存在しない。
提案手法の有効性を,詳細なセンサモデルによる評価により検証した。
論文 参考訳(メタデータ) (2021-06-15T18:51:39Z) - SimNet: Learning Reactive Self-driving Simulations from Real-world
Observations [10.035169936164504]
運転体験を現実的にシミュレートできるエンドツーエンドのトレーニング可能な機械学習システムを提案する。
これは、高価で時間を要する道路テストに頼ることなく、自動運転システムのパフォーマンスの検証に使用できる。
論文 参考訳(メタデータ) (2021-05-26T05:14:23Z) - Objective-aware Traffic Simulation via Inverse Reinforcement Learning [31.26257563160961]
逆強化学習問題として交通シミュレーションを定式化する。
動的ロバストシミュレーション学習のためのパラメータ共有逆強化学習モデルを提案する。
提案モデルでは,実世界の車両の軌道を模倣し,同時に報酬関数を復元することができる。
論文 参考訳(メタデータ) (2021-05-20T07:26:34Z) - Testing the Safety of Self-driving Vehicles by Simulating Perception and
Prediction [88.0416857308144]
センサシミュレーションは高価であり,領域ギャップが大きいため,センサシミュレーションに代わる方法を提案する。
我々は、自動運転車の知覚と予測システムの出力を直接シミュレートし、現実的な動き計画テストを可能にする。
論文 参考訳(メタデータ) (2020-08-13T17:20:02Z) - Point Cloud Based Reinforcement Learning for Sim-to-Real and Partial
Observability in Visual Navigation [62.22058066456076]
強化学習(Reinforcement Learning, RL)は、複雑なロボットタスクを解決する強力なツールである。
RL は sim-to-real transfer problem として知られる現実世界では直接作用しない。
本稿では,点雲と環境ランダム化によって構築された観測空間を学習する手法を提案する。
論文 参考訳(メタデータ) (2020-07-27T17:46:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。