論文の概要: DIVA: A Dirichlet Process Based Incremental Deep Clustering Algorithm
via Variational Auto-Encoder
- arxiv url: http://arxiv.org/abs/2305.14067v2
- Date: Mon, 12 Jun 2023 18:55:40 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-14 17:08:13.277601
- Title: DIVA: A Dirichlet Process Based Incremental Deep Clustering Algorithm
via Variational Auto-Encoder
- Title(参考訳): DIVA: 変分オートエンコーダによるディリクレプロセスに基づくインクリメンタルディープクラスタリングアルゴリズム
- Authors: Zhenshan Bing, Yuan Meng, Yuqi Yun, Hang Su, Xiaojie Su, Kai Huang,
Alois Knoll
- Abstract要約: 本稿では,ガウスの無限混合を先行として利用する非パラメトリックディープクラスタリングフレームワークを提案する。
このフレームワークをDirichlet ProcessベースのインクリメンタルディープクラスタリングフレームワークであるDIVAと名付けます。
我々のフレームワークは最先端のベースラインより優れており、動的に変化する特徴を持つ複雑なデータの分類において優れた性能を示す。
- 参考スコア(独自算出の注目度): 20.197378490435348
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Generative model-based deep clustering frameworks excel in classifying
complex data, but are limited in handling dynamic and complex features because
they require prior knowledge of the number of clusters. In this paper, we
propose a nonparametric deep clustering framework that employs an infinite
mixture of Gaussians as a prior. Our framework utilizes a memoized online
variational inference method that enables the "birth" and "merge" moves of
clusters, allowing our framework to cluster data in a "dynamic-adaptive"
manner, without requiring prior knowledge of the number of features. We name
the framework as DIVA, a Dirichlet Process-based Incremental deep clustering
framework via Variational Auto-Encoder. Our framework, which outperforms
state-of-the-art baselines, exhibits superior performance in classifying
complex data with dynamically changing features, particularly in the case of
incremental features. We released our source code implementation at:
https://github.com/Ghiara/diva
- Abstract(参考訳): 生成モデルベースのディープクラスタリングフレームワークは、複雑なデータの分類に優れているが、クラスタ数の事前知識を必要とするため、動的で複雑な機能を扱うには制限がある。
本稿では,ガウスの無限混合を先行として利用する非パラメトリックディープクラスタリングフレームワークを提案する。
我々のフレームワークは,クラスタの「生成」と「マージ」を可能とし,特徴量の事前知識を必要とせず,動的適応的な方法でデータをクラスタ化することができる,メモ化されたオンライン変分推論手法を使用している。
このフレームワークをDirichlet ProcessベースのインクリメンタルディープクラスタリングフレームワークであるDIVAと名付けます。
我々のフレームワークは、最先端のベースラインよりも優れており、特にインクリメンタル機能の場合、動的に変化する特徴を持つ複雑なデータの分類において優れた性能を示す。
ソースコードの実装は、https://github.com/Ghiara/divaでリリースしました。
関連論文リスト
- Self-Supervised Graph Embedding Clustering [70.36328717683297]
K-means 1-step dimensionality reduction clustering method は,クラスタリングタスクにおける次元性の呪いに対処する上で,いくつかの進歩をもたらした。
本稿では,K-meansに多様体学習を統合する統一フレームワークを提案する。
論文 参考訳(メタデータ) (2024-09-24T08:59:51Z) - Reinforcement Graph Clustering with Unknown Cluster Number [91.4861135742095]
本稿では,Reinforcement Graph Clusteringと呼ばれる新しいディープグラフクラスタリング手法を提案する。
提案手法では,クラスタ数決定と教師なし表現学習を統一的なフレームワークに統合する。
フィードバック動作を行うために、クラスタリング指向の報酬関数を提案し、同一クラスタの凝集を高め、異なるクラスタを分離する。
論文 参考訳(メタデータ) (2023-08-13T18:12:28Z) - Deep Multi-View Subspace Clustering with Anchor Graph [11.291831842959926]
アンカーグラフ(DMCAG)を用いた深層多視点サブスペースクラスタリング手法を提案する。
DMCAGは各ビューの埋め込み機能を独立して学習し、サブスペース表現を得るために使用される。
本手法は他の最先端手法よりも優れたクラスタリング性能を実現する。
論文 参考訳(メタデータ) (2023-05-11T16:17:43Z) - A Generalized Framework for Predictive Clustering and Optimization [18.06697544912383]
クラスタリングは強力で広く使われているデータサイエンスツールです。
本稿では,予測クラスタリングのための一般化最適化フレームワークを定義する。
また,大域的最適化のためにMILP(mixed-integer linear programming)を利用する共同最適化手法を提案する。
論文 参考訳(メタデータ) (2023-05-07T19:56:51Z) - CLUSTSEG: Clustering for Universal Segmentation [56.58677563046506]
CLUSTSEGは画像セグメンテーションのための一般的なトランスフォーマーベースのフレームワークである。
これは、統合されたニューラルクラスタリングスキームを通じて、異なるイメージセグメンテーションタスク(スーパーピクセル、セマンティック、インスタンス、パノプティクス)に取り組む。
論文 参考訳(メタデータ) (2023-05-03T15:31:16Z) - Hard Regularization to Prevent Deep Online Clustering Collapse without
Data Augmentation [65.268245109828]
オンラインディープクラスタリング(オンラインディープクラスタリング)とは、機能抽出ネットワークとクラスタリングモデルを組み合わせて、クラスタラベルを処理された各新しいデータポイントまたはバッチに割り当てることである。
オフラインメソッドよりも高速で汎用性が高いが、オンラインクラスタリングは、エンコーダがすべての入力を同じポイントにマッピングし、すべてを単一のクラスタに配置する、崩壊したソリューションに容易に到達することができる。
本稿では,データ拡張を必要としない手法を提案する。
論文 参考訳(メタデータ) (2023-03-29T08:23:26Z) - Mixture Model Auto-Encoders: Deep Clustering through Dictionary Learning [72.9458277424712]
Mixture Model Auto-Encoders (MixMate)は、生成モデルで推論を実行することでデータをクラスタリングする新しいアーキテクチャである。
最先端のディープクラスタリングアルゴリズムと比較して,MixMateは競争性能が高いことを示す。
論文 参考訳(メタデータ) (2021-10-10T02:30:31Z) - Variational Auto Encoder Gradient Clustering [0.0]
近年,ディープニューラルネットワークモデルを用いたクラスタリングが広く研究されている。
本稿では、より良いクラスタリングを実現するために確率関数勾配上昇を使用してデータを処理する方法を検討する。
DBSCANクラスタリングアルゴリズムに基づいて,データに適したクラスタ数を調べるための簡便かつ効果的な方法を提案する。
論文 参考訳(メタデータ) (2021-05-11T08:00:36Z) - Event-Driven News Stream Clustering using Entity-Aware Contextual
Embeddings [14.225334321146779]
本稿では,非パラメトリックストリーミングk-meansアルゴリズムの変種であるオンラインニュースストリームクラスタリング手法を提案する。
我々のモデルはスパースと密集した文書表現の組み合わせを使用し、これらの複数の表現に沿って文書とクラスタの類似性を集約する。
事前学習したトランスフォーマモデルにおいて,適切な微調整目標と外部知識を用いることにより,文脈埋め込みの有効性が大幅に向上することを示す。
論文 参考訳(メタデータ) (2021-01-26T19:58:30Z) - Joint Optimization of an Autoencoder for Clustering and Embedding [22.16059261437617]
本稿では,自動エンコーダとクラスタリングを同時に学習する代替手法を提案する。
この単純なニューラルネットワークはクラスタリングモジュールと呼ばれ、ディープオートエンコーダに統合され、ディープクラスタリングモデルとなる。
論文 参考訳(メタデータ) (2020-12-07T14:38:10Z) - Online Deep Clustering for Unsupervised Representation Learning [108.33534231219464]
オンラインディープクラスタリング(ODC)は、交互にではなく、クラスタリングとネットワーク更新を同時に実行する。
我々は,2つの動的メモリモジュール,すなわち,サンプルラベルと特徴を格納するサンプルメモリと,セントロイド進化のためのセントロイドメモリを設計,維持する。
このように、ラベルとネットワークは交互にではなく肩から肩へと進化する。
論文 参考訳(メタデータ) (2020-06-18T16:15:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。