論文の概要: Memory-Efficient Fine-Tuning of Compressed Large Language Models via
sub-4-bit Integer Quantization
- arxiv url: http://arxiv.org/abs/2305.14152v2
- Date: Sat, 28 Oct 2023 11:53:52 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-31 22:11:51.621498
- Title: Memory-Efficient Fine-Tuning of Compressed Large Language Models via
sub-4-bit Integer Quantization
- Title(参考訳): サブ4ビット整数量子化による圧縮大言語モデルのメモリ効率向上
- Authors: Jeonghoon Kim, Jung Hyun Lee, Sungdong Kim, Joonsuk Park, Kang Min
Yoo, Se Jung Kwon, Dongsoo Lee
- Abstract要約: 大規模言語モデル(LLM)は、高いメモリ要求と計算コストのため、微調整とデプロイメントの課題に直面している。
本稿では,PEFT と量子化 LLM の利点を組み合わせた簡易かつ効果的な手法である PEQA (Efficient Adaptation and Quantization-aware) を提案する。
- 参考スコア(独自算出の注目度): 27.79783067245817
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large language models (LLMs) face the challenges in fine-tuning and
deployment due to their high memory demands and computational costs. While
parameter-efficient fine-tuning (PEFT) methods aim to reduce the memory usage
of the optimizer state during fine-tuning, the inherent size of pre-trained LLM
weights continues to be a pressing concern. Even though quantization techniques
are widely proposed to ease memory demands and accelerate LLM inference, most
of these techniques are geared towards the deployment phase. To bridge this
gap, this paper presents Parameter-Efficient and Quantization-aware Adaptation
(PEQA) - a simple yet effective method that combines the advantages of PEFT
with quantized LLMs. By updating solely the quantization scales, PEQA can be
directly applied to quantized LLMs, ensuring seamless task transitions.
Parallel to existing PEFT methods, PEQA significantly reduces the memory
overhead associated with the optimizer state. Furthermore, it leverages the
advantages of quantization to substantially reduce model sizes. Even after
fine-tuning, the quantization structure of a PEQA-tuned LLM remains intact,
allowing for accelerated inference on the deployment stage. We employ
PEQA-tuning for task-specific adaptation on LLMs with up to 65 billion
parameters. To assess the logical reasoning and language comprehension of
PEQA-tuned LLMs, we fine-tune low-bit quantized LLMs using a instruction
dataset. Our results show that even when LLMs are quantized to below 4-bit
precision, their capabilities in language modeling, few-shot in-context
learning, and comprehension can be resiliently restored to (or even improved
over) their full-precision original performances with PEQA.
- Abstract(参考訳): 大規模言語モデル(LLM)は、高いメモリ要求と計算コストのために微調整とデプロイメントの課題に直面している。
パラメータ効率のよい微調整法(PEFT)は、微調整中の最適化状態のメモリ使用量を減らすことを目的としているが、事前訓練されたLCM重みの固有のサイズは、引き続き懸念されている。
メモリ要求の緩和とLCM推論の高速化のために量子化技術が広く提案されているが、これらの技術のほとんどは展開フェーズに向けている。
このギャップを埋めるために,PEFT と量子化 LLM の利点を組み合わせた単純かつ効果的な手法であるパラメータ効率・量子化認識適応(PEQA)を提案する。
量子化スケールのみを更新することにより、PEQAは量子化LDMに直接適用でき、シームレスなタスク遷移が保証される。
既存のPEFTメソッドと並行して、PEQAはオプティマイザ状態に関連するメモリオーバーヘッドを大幅に削減する。
さらに、量子化の利点を活用して、モデルのサイズを大幅に削減する。
微調整後も、PEQAを調整したLLMの量子化構造はそのままであり、デプロイ段階での推論が高速化される。
最大65億のパラメータを持つLLM上でのタスク固有適応にPEQAチューニングを用いる。
PEQAをチューニングしたLLMの論理的推論と言語理解を評価するために,命令データセットを用いて低ビット量子化LLMを微調整する。
その結果、LLMを4ビット未満の精度で量子化しても、言語モデリング、少数ショットインコンテキスト学習、理解能力はPEQAで完全精度のオリジナルパフォーマンスに回復(あるいは改善)可能であることがわかった。
関連論文リスト
- SLiM: One-shot Quantized Sparse Plus Low-rank Approximation of LLMs [2.7624021966289605]
大規模言語モデル(LLM)は、自然言語の理解と生成タスクに革命をもたらした。
LLMは、大きなパラメータサイズのため、メモリ消費が高く、推論時間が遅い。
本稿では,1ショットの量子スパースプラス低ランク近似を用いたLEMの圧縮手法であるSLiMを紹介する。
論文 参考訳(メタデータ) (2024-10-12T18:36:07Z) - LRQ: Optimizing Post-Training Quantization for Large Language Models by Learning Low-Rank Weight-Scaling Matrices [41.17378536966264]
低ランク量子化$-$は、大規模言語モデルのための単純だが効果的なポストトレーニング重み量子化法である。
低ランク構造によるパラメータ共有により、LRQは重みの個別のスケーリングを可能にしながら、パラメータを著しく少ない値で学習するのみである。
従来の LLM PTQ よりも, (i) 8$-bit ウェイトおよび (ii) 4$-bit ウェイトおよび (ii) 8$-bit アクティベーション量子化, (iii) 低ビット ウェイトのみの量子化スキームにおける LRQ の優位性を示す。
論文 参考訳(メタデータ) (2024-07-16T09:32:07Z) - EfficientQAT: Efficient Quantization-Aware Training for Large Language Models [50.525259103219256]
量子化対応トレーニング(QAT)は、低ビット表現によるメモリ消費を最小限の精度で削減することで、ソリューションを提供する。
より有効なQATアルゴリズムであるEfficient QAT(Efficient Quantization-Aware Training)を提案する。
効率的なQATは、全てのパラメータのブロックワイドトレーニング(Block-AP)と量子化パラメータのエンドツーエンドトレーニング(E2E-QP)の2つのフェーズを含む。
論文 参考訳(メタデータ) (2024-07-10T17:53:30Z) - SPP: Sparsity-Preserved Parameter-Efficient Fine-Tuning for Large Language Models [53.638791265113625]
空間保存型大規模言語モデルのための効率的な微調整法
コードはhttps://github.com/Lucky-Lance/SPP.comで公開される。
論文 参考訳(メタデータ) (2024-05-25T04:55:27Z) - SliM-LLM: Salience-Driven Mixed-Precision Quantization for Large Language Models [67.67135738642547]
後学習量子化(PTQ)は、大規模言語モデル(LLM)において研究される強力な圧縮手法である。
既存のPTQ法は、特に4ビット幅以下では、精度と効率の点で理想的ではない。
本稿では,LSM,すなわちSliM-LLMに対するSalience-Driven Mixed-Precision Quantizationスキームを提案する。
論文 参考訳(メタデータ) (2024-05-23T16:21:48Z) - AffineQuant: Affine Transformation Quantization for Large Language Models [58.45460102764]
ポストトレーニング量子化(PTQ)は、その圧縮効率とトレーニングの文脈における費用対効果により、かなりの関心を集めている。
既存の大規模言語モデル(LLM)のPTQ手法は、事前量子化重みと後量子化重みの間の変換のスケーリングに最適化範囲を制限している。
本稿では,PTQ(AffineQuant)における等価アフィン変換を用いた直接最適化を提唱する。
論文 参考訳(メタデータ) (2024-03-19T08:40:21Z) - A Comprehensive Evaluation of Quantization Strategies for Large Language Models [42.03804933928227]
大規模言語モデル(LLM)におけるパラメータの数を増やすことで、ダウンストリームタスクのパフォーマンスが向上するが、計算とメモリコストが上昇する。
モデルウェイトやアクティベーションに必要なビットを最小性能で削減する量子化技術が普及している。
本稿では,知識とキャパシティ,(2)アライメント,(3)効率の3つの重要な次元からなる構造化評価フレームワークを提案する。
論文 参考訳(メタデータ) (2024-02-26T17:45:36Z) - L4Q: Parameter Efficient Quantization-Aware Fine-Tuning on Large Language Models [5.304907804008533]
量子化学習(QAT)とローランド適応(LoRA)を統合し,量子化誤差を効果的に低減する手法であるL4Qを提案する。
メモリ最適化層設計を採用することで、L4QはQATのメモリオーバーヘッドを大幅に削減し、完全な量子化重みを生成する。
論文 参考訳(メタデータ) (2024-02-07T14:35:05Z) - BiLLM: Pushing the Limit of Post-Training Quantization for LLMs [53.31402059062365]
BiLLMは、事前訓練された大規模言語モデルに適した1ビット後のトレーニング後の量子化スキームである。
LLaMA2-70Bの8.41パープレキシティは、様々なLLMファミリーで1.08ビットの重みしか持たない。
論文 参考訳(メタデータ) (2024-02-06T09:26:34Z) - PreQuant: A Task-agnostic Quantization Approach for Pre-trained Language
Models [52.09865918265002]
ファインチューニングのフレームワークPreQuantに先立って,新しい量子化を提案する。
PreQuantは様々な量子化戦略と互換性があり、インダクションされた量子化誤差を修正するために、アウタリア対応の微調整が組み込まれている。
BERT,RoBERTa,T5を用いたGLUEベンチマークにおけるPreQuantの有効性を示す。
論文 参考訳(メタデータ) (2023-05-30T08:41:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。