論文の概要: EfficientQAT: Efficient Quantization-Aware Training for Large Language Models
- arxiv url: http://arxiv.org/abs/2407.11062v2
- Date: Wed, 2 Oct 2024 13:44:30 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-08 21:21:36.812284
- Title: EfficientQAT: Efficient Quantization-Aware Training for Large Language Models
- Title(参考訳): EfficientQAT: 大規模言語モデルの効率的な量子化学習
- Authors: Mengzhao Chen, Wenqi Shao, Peng Xu, Jiahao Wang, Peng Gao, Kaipeng Zhang, Ping Luo,
- Abstract要約: 量子化対応トレーニング(QAT)は、低ビット表現によるメモリ消費を最小限の精度で削減することで、ソリューションを提供する。
より有効なQATアルゴリズムであるEfficient QAT(Efficient Quantization-Aware Training)を提案する。
効率的なQATは、全てのパラメータのブロックワイドトレーニング(Block-AP)と量子化パラメータのエンドツーエンドトレーニング(E2E-QP)の2つのフェーズを含む。
- 参考スコア(独自算出の注目度): 50.525259103219256
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large language models (LLMs) are crucial in modern natural language processing and artificial intelligence. However, they face challenges in managing their significant memory requirements. Although quantization-aware training (QAT) offers a solution by reducing memory consumption through low-bit representations with minimal accuracy loss, it is impractical due to substantial training resources. To address this, we propose Efficient Quantization-Aware Training (EfficientQAT), a more feasible QAT algorithm. EfficientQAT involves two consecutive phases: Block-wise training of all parameters (Block-AP) and end-to-end training of quantization parameters (E2E-QP). To the best of our knowledge, Block-AP is the first method to enable direct training of all parameters in a block-wise manner, reducing accuracy loss in low-bit scenarios by enhancing the solution space during optimization. E2E-QP then trains only the quantization parameters (step sizes) end-to-end, further improving the performance of quantized models by considering interactions among all sub-modules. Extensive experiments demonstrate that EfficientQAT outperforms previous quantization methods across a range of models, including base LLMs, instruction-tuned LLMs, and multimodal LLMs, with scales from 7B to 70B parameters at various quantization bits. For instance, EfficientQAT obtains a 2-bit Llama-2-70B model on a single A100-80GB GPU in 41 hours, with less than 3 points accuracy degradation compared to the full precision (69.48 vs. 72.41). Code is available at https://github.com/OpenGVLab/EfficientQAT.
- Abstract(参考訳): 大規模言語モデル(LLM)は、現代の自然言語処理と人工知能において重要である。
しかし、それらは重要なメモリ要件を管理する上での課題に直面している。
量子化対応トレーニング(QAT)は、低ビット表現によるメモリ消費を最小限の精度で削減するソリューションを提供するが、かなりのトレーニングリソースのために現実的ではない。
そこで本研究では,より有効なQATアルゴリズムであるEfficient Quantization-Aware Training (EfficientQAT)を提案する。
EfficientQATは、すべてのパラメータ(Block-AP)のブロックワイドトレーニングと、量子化パラメータ(E2E-QP)のエンドツーエンドトレーニングの2つのフェーズを含む。
我々の知る限り、Block-APは、ブロックワイズで全てのパラメータを直接訓練できる最初の方法であり、最適化時に解空間を拡大することにより、低ビットシナリオの精度損失を低減する。
E2E-QPは、量子化パラメータ(ステップサイズ)をエンドツーエンドにのみ訓練し、全てのサブモジュール間の相互作用を考慮することにより、量子化モデルの性能をさらに向上させる。
EfficientQATは、ベースLLM、命令調整LDM、マルチモーダルLDMなど、様々な量子化ビットで7Bから70Bのスケールで、従来の量子化手法よりも優れていることを示した。
例えば、EfficientQATは、1つのA100-80GB GPU上の2ビットのLlama-2-70Bモデルを41時間で取得し、全精度(69.48 vs. 72.41)と比較して3ポイント未満の精度で分解する。
コードはhttps://github.com/OpenGVLab/EfficientQAT.comで入手できる。
関連論文リスト
- EfQAT: An Efficient Framework for Quantization-Aware Training [20.47826378511535]
量子化対応トレーニング(QAT)スキームは、ほぼ完全な精度を実現することが示されている。
ポストトレーニング量子化(PTQ)スキームはトレーニングを伴わないため、計算的に安価である。
本稿では、量子化モデルのパラメータのサブセットのみを最適化することにより、両方のスキームを一般化するEfQATを提案する。
論文 参考訳(メタデータ) (2024-11-17T11:06:36Z) - GPTQT: Quantize Large Language Models Twice to Push the Efficiency [1.3149617027696827]
本稿では,学習後量子化手法であるGPTQTを導入し,メモリ使用量の削減と処理速度の向上を図る。
重みの量子化誤差の最小化は非効率であり、過度に適合することを示した。
GPTQTは、最初は線形量子化を用いて重みを相対的に高いビットに量子化し、続いて得られた重みを低ビットバイナリ符号化に変換する。
論文 参考訳(メタデータ) (2024-07-03T08:08:01Z) - Low-Rank Quantization-Aware Training for LLMs [8.535254310145005]
大規模言語モデル(LLM)は、一様だが、計算とメモリの需要がますます増大しているため、その実践的な展開は困難である。
LLMのための軽量かつメモリ効率のQATアルゴリズムであるLR-QATを提案する。
提案手法は、PTQ(Common-training Quantization)アプローチよりも優れ、メモリ使用率のごく一部でフルモデルQATと同じモデル性能に達する。
論文 参考訳(メタデータ) (2024-06-10T15:44:22Z) - BiLLM: Pushing the Limit of Post-Training Quantization for LLMs [53.31402059062365]
BiLLMは、事前訓練された大規模言語モデルに適した1ビット後のトレーニング後の量子化スキームである。
LLaMA2-70Bの8.41パープレキシティは、様々なLLMファミリーで1.08ビットの重みしか持たない。
論文 参考訳(メタデータ) (2024-02-06T09:26:34Z) - Extreme Compression of Large Language Models via Additive Quantization [59.3122859349777]
我々のアルゴリズムは、AQLMと呼ばれ、情報検索のための古典的な加算量子化(AQ)アプローチを一般化する。
トークン生成のためのAQLMの高速GPUおよびCPU実装を提供しており、最適化されたFP16実装を高速にマッチングまたは性能良くすることができる。
論文 参考訳(メタデータ) (2024-01-11T18:54:44Z) - TEQ: Trainable Equivalent Transformation for Quantization of LLMs [1.0376648762140632]
TEQは、低精度量子化を生かしながら、モデル出力のFP32精度を保存する訓練可能な等価変換である。
トレーニングプロセスは軽量で、1Kステップしか必要とせず、オリジナルのモデルのトレーニング可能なパラメータの0.1%未満である。
論文 参考訳(メタデータ) (2023-10-17T02:42:34Z) - OmniQuant: Omnidirectionally Calibrated Quantization for Large Language Models [57.27101446992148]
大規模言語モデル(LLM)は自然言語処理タスクに革命をもたらした。
近年のPTQ法はメモリフットプリントの削減とLLMの計算効率の向上に有効である。
多様な量子化設定において優れた性能を実現するLLMのOmnidirectly calibrated Quantization手法を提案する。
論文 参考訳(メタデータ) (2023-08-25T02:28:35Z) - Few-Shot Parameter-Efficient Fine-Tuning is Better and Cheaper than
In-Context Learning [81.3514358542452]
ICL (Few-shot in-context Learning) は、予測を行うたびにトレーニング例を全て処理するので、かなりの計算、メモリ、ストレージコストを発生させる。
パラメータ効率の良い微調整は、モデルの新たなタスクの実行を可能にするために、小さなパラメータセットをトレーニングする、代替パラダイムを提供する。
本稿では,少数ショットICLとパラメータ効率の微調整を厳密に比較し,後者が計算コストを劇的に削減できることを示す。
論文 参考訳(メタデータ) (2022-05-11T17:10:41Z) - Towards Efficient Post-training Quantization of Pre-trained Language
Models [85.68317334241287]
PLMのポストトレーニング量子化(PTQ)について検討し,モジュール単位の量子化誤差最小化(MREM)を提案する。
GLUEとSQuADベンチマークの実験により、提案したPTQソリューションはQATに近く動作するだけでなく、トレーニング時間、メモリオーバーヘッド、データ消費を大幅に削減できることがわかった。
論文 参考訳(メタデータ) (2021-09-30T12:50:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。