論文の概要: Revisiting Subgradient Method: Complexity and Convergence Beyond Lipschitz Continuity
- arxiv url: http://arxiv.org/abs/2305.14161v2
- Date: Thu, 31 Oct 2024 02:34:43 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-01 16:56:28.454458
- Title: Revisiting Subgradient Method: Complexity and Convergence Beyond Lipschitz Continuity
- Title(参考訳): リプシッツ連続性を超えた複雑さと収束性
- Authors: Xiao Li, Lei Zhao, Daoli Zhu, Anthony Man-Cho So,
- Abstract要約: 次進法は非滑らかな最適化のための最も基本的なアルゴリズムスキームの1つである。
本研究では、まず、非Lipschitz凸と弱凸最小化をカバーするために、下次法の典型的な反復複雑性結果を拡張する。
- 参考スコア(独自算出の注目度): 24.45688490844496
- License:
- Abstract: The subgradient method is one of the most fundamental algorithmic schemes for nonsmooth optimization. The existing complexity and convergence results for this method are mainly derived for Lipschitz continuous objective functions. In this work, we first extend the typical iteration complexity results for the subgradient method to cover non-Lipschitz convex and weakly convex minimization. Specifically, for the convex case, we can drive the suboptimality gap to below $\varepsilon$ in $\mathcal{O}( \varepsilon^{-2} )$ iterations; for the weakly convex case, we can drive the gradient norm of the Moreau envelope of the objective function to below $\varepsilon$ in $\mathcal{O}( \varepsilon^{-4} )$ iterations. Then, we provide convergence results for the subgradient method in the non-Lipschitz setting when proper diminishing rules on the step size are used. In particular, when $f$ is convex, we establish an $\mathcal{O}(\log(k)/\sqrt{k})$ rate of convergence in terms of the suboptimality gap, where $k$ represents the iteration count. With an additional quadratic growth property, the rate is improved to $\mathcal{O}(1/k)$ in terms of the squared distance to the optimal solution set. When $f$ is weakly convex, asymptotic convergence is established. Our results neither require any modification to the subgradient method nor impose any growth condition on the subgradients, while our analysis is surprisingly simple. To further illustrate the wide applicability of our framework, we extend the aforementioned iteration complexity results to cover the truncated subgradient, the stochastic subgradient, and the proximal subgradient methods for non-Lipschitz convex / weakly convex objective functions.
- Abstract(参考訳): 勾配法は非滑らかな最適化のための最も基本的なアルゴリズムスキームの1つである。
この方法の既存の複雑性と収束結果は、主にリプシッツ連続目的関数のために導出される。
本研究では、まず、非Lipschitz凸と弱凸最小化をカバーするために、下次法の典型的な反復複雑性結果を拡張する。
具体的には、凸の場合、準最適性ギャップを$\mathcal{O}( \varepsilon^{-2} )$イテレーションで、弱凸の場合、目的関数のモローエンベロープの勾配ノルムを$\mathcal{O}( \varepsilon^{-4} )$イテレーションで$$\mathcal{O}( \varepsilon^{-4} )以下にすることができる。
次に,ステップサイズに対する適切な減少規則が用いられる場合,非Lipschitz設定において,段階的手法の収束結果を提供する。
特に、$f$ が凸であれば、$k$ が反復数を表す部分最適性ギャップという観点から $\mathcal{O}(\log(k)/\sqrt{k})$収束率を確立する。
追加の二次成長特性により、最適解集合への平方距離の点で$\mathcal{O}(1/k)$に改善される。
f$ が弱凸であるとき、漸近収束が確立される。
本研究の結果は, 過次法の変更や, 過次法に成長条件を課す必要はなく, 解析は驚くほど単純である。
フレームワークの広範な適用性を説明するため、上記の反復複雑性を拡張して、非Lipschitz凸/弱凸目的関数に対するトランケート下次法、確率下次法、および近位下次法をカバーする。
関連論文リスト
- Methods for Convex $(L_0,L_1)$-Smooth Optimization: Clipping, Acceleration, and Adaptivity [50.25258834153574]
我々は、(強に)凸 $(L0)$-smooth 関数のクラスに焦点を当て、いくつかの既存のメソッドに対する新しい収束保証を導出する。
特に,スムーズなグラディエント・クリッピングを有するグラディエント・ディフレッシュと,ポリアク・ステップサイズを有するグラディエント・ディフレッシュのコンバージェンス・レートの改善を導出した。
論文 参考訳(メタデータ) (2024-09-23T13:11:37Z) - A Unified Analysis for the Subgradient Methods Minimizing Composite
Nonconvex, Nonsmooth and Non-Lipschitz Functions [8.960341489080609]
非Lipschitzおよび非滑らかな最適化問題の文脈における新しい収束解析を提案する。
論文で導入すべき下次上界条件のいずれかの下では、$O (1/stqrT)$がエンベロープ関数の平方勾配で成り立つことを示し、さらに1/2$指数を持つ一様KL条件が成り立つ場合、$O (1/T)$に改善される。
論文 参考訳(メタデータ) (2023-08-30T23:34:11Z) - Universal Online Learning with Gradient Variations: A Multi-layer Online Ensemble Approach [57.92727189589498]
本稿では,2段階の適応性を持つオンライン凸最適化手法を提案する。
我々は$mathcalO(log V_T)$, $mathcalO(d log V_T)$, $hatmathcalO(sqrtV_T)$ regret bounds for strong convex, exp-concave and convex loss function。
論文 参考訳(メタデータ) (2023-07-17T09:55:35Z) - A Newton-CG based barrier-augmented Lagrangian method for general nonconvex conic optimization [53.044526424637866]
本稿では、2つの異なる対象の一般円錐最適化を最小化する近似二階定常点(SOSP)について検討する。
特に、近似SOSPを見つけるためのNewton-CGベースの拡張共役法を提案する。
論文 参考訳(メタデータ) (2023-01-10T20:43:29Z) - Randomized Coordinate Subgradient Method for Nonsmooth Composite
Optimization [11.017632675093628]
非滑らかな問題に対処するコーディネート型劣階法は、リプシッツ型仮定の性質のセットのため、比較的過小評価されている。
論文 参考訳(メタデータ) (2022-06-30T02:17:11Z) - Optimal Extragradient-Based Bilinearly-Coupled Saddle-Point Optimization [116.89941263390769]
滑らかな凸凹凸結合型サドル点問題, $min_mathbfxmax_mathbfyF(mathbfx) + H(mathbfx,mathbfy)$ を考える。
漸進的勾配指数(AG-EG)降下指数アルゴリズムについて述べる。
論文 参考訳(メタデータ) (2022-06-17T06:10:20Z) - Accelerated first-order methods for convex optimization with locally
Lipschitz continuous gradient [0.0]
まず,Lipschitz連続勾配 (LLCG) を用いた非拘束凸最適化について検討し,それを解決するための加速近位勾配 (APG) 法を提案する。
提案手法は検証可能な終端基準を備えており、演算複雑性は$cal O(varepsilon-1/2log varepsilon-1)$である。
提案手法の性能を実証するために,予備的な数値計算結果を示す。
論文 参考訳(メタデータ) (2022-06-02T10:34:26Z) - Generalized Optimistic Methods for Convex-Concave Saddle Point Problems [24.5327016306566]
この楽観的な手法は凸凹点問題の解法として人気が高まっている。
我々は,係数を知らずにステップサイズを選択するバックトラックライン探索手法を開発した。
論文 参考訳(メタデータ) (2022-02-19T20:31:05Z) - A first-order primal-dual method with adaptivity to local smoothness [64.62056765216386]
凸凹対象 $min_x max_y f(x) + langle Ax, yrangle - g*(y)$, ここで、$f$ は局所リプシッツ勾配を持つ凸関数であり、$g$ は凸かつ非滑らかである。
主勾配ステップと2段ステップを交互に交互に行うCondat-Vuアルゴリズムの適応バージョンを提案する。
論文 参考訳(メタデータ) (2021-10-28T14:19:30Z) - Complexity of Finding Stationary Points of Nonsmooth Nonconvex Functions [84.49087114959872]
非滑らかで非滑らかな関数の定常点を見つけるための最初の非漸近解析を提供する。
特に、アダマール半微分可能函数(おそらく非滑らか関数の最大のクラス)について研究する。
論文 参考訳(メタデータ) (2020-02-10T23:23:04Z) - Randomized Bregman Coordinate Descent Methods for Non-Lipschitz
Optimization [31.474280642125734]
そこで本研究では,新しいテクステンラン化ブレグマン座標降下法(CD)を提案する。
提案手法は$O(epsilon-2n)$であり,$n$は座標のブロック数であることを示す。
論文 参考訳(メタデータ) (2020-01-15T09:57:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。