論文の概要: Evaluation of the MACE Force Field Architecture: from Medicinal
Chemistry to Materials Science
- arxiv url: http://arxiv.org/abs/2305.14247v1
- Date: Tue, 23 May 2023 17:01:25 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-24 14:25:01.798396
- Title: Evaluation of the MACE Force Field Architecture: from Medicinal
Chemistry to Materials Science
- Title(参考訳): MACE力場構造の評価-医薬化学から材料科学へ
- Authors: David Peter Kovacs, Ilyes Batatia, Eszter Sara Arany, Gabor Csanyi
- Abstract要約: MACEは、アモルファス炭素や一般的な小さな分子有機化学から、大きな分子や液体水に至るまで、幅広いシステムにおいて代替品よりも優れた性能を示す。
MACEは非常にデータ効率が高く、50個のランダムに選択された基準構成でトレーニングした場合、実験分子振動スペクトルを再現できることを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The MACE architecture represents the state of the art in the field of machine
learning force fields for a variety of in-domain, extrapolation and low-data
regime tasks. In this paper, we further evaluate MACE by fitting models for
published benchmark datasets. We show that MACE generally outperforms
alternatives for a wide range of systems from amorphous carbon and general
small molecule organic chemistry to large molecules and liquid water. We
demonstrate the capabilities of the model on tasks ranging from constrained
geometry optimisation to molecular dynamics simulations and find excellent
performance across all tested domains. We show that MACE is very data
efficient, and can reproduce experimental molecular vibrational spectra when
trained on as few as 50 randomly selected reference configurations. We further
demonstrate that the strictly local atom-centered model is sufficient for such
tasks even in the case of large molecules and weakly interacting molecular
assemblies.
- Abstract(参考訳): MACEアーキテクチャは、さまざまなドメイン内、外挿、低データレギュレーションタスクのための機械学習力フィールドの分野における芸術の状態を表現している。
本稿では,公開ベンチマークデータセットに適合するモデルを用いて,maceをさらに評価する。
MACEは、一般に、アモルファス炭素や一般的な小さな分子有機化学から、大きな分子や液体水に至るまで、幅広い系の代替品よりも優れていることを示す。
制約付き幾何最適化から分子動力学シミュレーションに至るまでのタスクにおけるモデルの性能を実証し,全てのテスト領域で優れた性能を示す。
MACEは非常にデータ効率が高く、50個のランダムに選択された基準構成でトレーニングした場合、実験分子振動スペクトルを再現できることを示す。
さらに, 厳密な局所原子中心モデルが, 大きな分子や弱い相互作用を持つ分子集合体の場合においても十分であることを示す。
関連論文リスト
- Generative Modeling of Molecular Dynamics Trajectories [12.255021091552441]
データからMDの柔軟なマルチタスクサロゲートモデルを学ぶためのパラダイムとして,分子軌道の生成モデルを提案する。
このような生成モデルは,前方シミュレーションや遷移経路サンプリング,軌道上アップサンプリングといった多様なタスクに適応可能であることを示す。
論文 参考訳(メタデータ) (2024-09-26T13:02:28Z) - Data-Driven Parametrization of Molecular Mechanics Force Fields for Expansive Chemical Space Coverage [16.745564099126575]
我々は、薬物様分子のアンバー互換力場であるByteFFを開発した。
本モデルでは, 薬物様分子のすべての結合および非結合MM力場パラメータを, 広い化学空間にわたって同時に予測する。
論文 参考訳(メタデータ) (2024-08-23T03:37:06Z) - UniIF: Unified Molecule Inverse Folding [67.60267592514381]
全分子の逆折り畳みのための統一モデルUniIFを提案する。
提案手法は,全タスクにおける最先端手法を超越した手法である。
論文 参考訳(メタデータ) (2024-05-29T10:26:16Z) - Data-Efficient Molecular Generation with Hierarchical Textual Inversion [48.816943690420224]
分子生成のための階層型テキスト変換法 (HI-Mol) を提案する。
HI-Molは分子分布を理解する上での階層的情報、例えば粗い特徴ときめ細かい特徴の重要性にインスパイアされている。
単一レベルトークン埋め込みを用いた画像領域の従来のテキストインバージョン法と比較して, マルチレベルトークン埋め込みにより, 基礎となる低ショット分子分布を効果的に学習することができる。
論文 参考訳(メタデータ) (2024-05-05T08:35:23Z) - Learning Over Molecular Conformer Ensembles: Datasets and Benchmarks [44.934084652800976]
コンフォーマーアンサンブルを用いた学習の可能性を徹底的に評価するための,最初のMoleculAR Conformer Ensemble Learningベンチマークを導入する。
その結果,コンバータ空間からの直接学習は,様々なタスクやモデルの性能を向上させることができることがわかった。
論文 参考訳(メタデータ) (2023-09-29T20:06:46Z) - Learning Harmonic Molecular Representations on Riemannian Manifold [18.49126496517951]
分子表現学習は、AIによる薬物発見研究において重要な役割を担っている。
本研究では,その分子表面のラプラス・ベルトラミ固有関数を用いた分子を表現する高調波分子表現学習フレームワークを提案する。
論文 参考訳(メタデータ) (2023-03-27T18:02:47Z) - Implicit Geometry and Interaction Embeddings Improve Few-Shot Molecular
Property Prediction [53.06671763877109]
我々は, 複雑な分子特性を符号化した分子埋め込みを開発し, 数発の分子特性予測の性能を向上させる。
我々の手法は大量の合成データ、すなわち分子ドッキング計算の結果を利用する。
複数の分子特性予測ベンチマークでは、埋め込み空間からのトレーニングにより、マルチタスク、MAML、プロトタイプラーニング性能が大幅に向上する。
論文 参考訳(メタデータ) (2023-02-04T01:32:40Z) - Accurate Machine Learned Quantum-Mechanical Force Fields for
Biomolecular Simulations [51.68332623405432]
分子動力学(MD)シミュレーションは、化学的および生物学的プロセスに関する原子論的な洞察を可能にする。
近年,MDシミュレーションの代替手段として機械学習力場(MLFF)が出現している。
本研究は、大規模分子シミュレーションのための正確なMLFFを構築するための一般的なアプローチを提案する。
論文 参考訳(メタデータ) (2022-05-17T13:08:28Z) - Flexible dual-branched message passing neural network for quantum
mechanical property prediction with molecular conformation [16.08677447593939]
メッセージパッシングフレームワークに基づく分子特性予測のための二重分岐ニューラルネットワークを提案する。
本モデルでは,様々なスケールで異種分子の特徴を学習し,予測対象に応じて柔軟に学習する。
論文 参考訳(メタデータ) (2021-06-14T10:00:39Z) - BIGDML: Towards Exact Machine Learning Force Fields for Materials [55.944221055171276]
機械学習力場(MLFF)は正確で、計算的で、データ効率が良く、分子、材料、およびそれらのインターフェースに適用できなければならない。
ここでは、Bravais-Inspired Gradient-Domain Machine Learningアプローチを導入し、わずか10-200原子のトレーニングセットを用いて、信頼性の高い力場を構築する能力を実証する。
論文 参考訳(メタデータ) (2021-06-08T10:14:57Z) - ASGN: An Active Semi-supervised Graph Neural Network for Molecular
Property Prediction [61.33144688400446]
本稿では,ラベル付き分子とラベルなし分子の両方を組み込んだ,アクティブ半教師付きグラフニューラルネットワーク(ASGN)を提案する。
教師モデルでは,分子構造や分子分布から情報を共同で活用する汎用表現を学習するための,新しい半教師付き学習手法を提案する。
最後に,分子多様性の観点から,フレームワーク学習全体を通して情報的データを選択するための新しい能動的学習戦略を提案する。
論文 参考訳(メタデータ) (2020-07-07T04:22:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。