論文の概要: Learning Harmonic Molecular Representations on Riemannian Manifold
- arxiv url: http://arxiv.org/abs/2303.15520v1
- Date: Mon, 27 Mar 2023 18:02:47 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-29 17:35:41.003340
- Title: Learning Harmonic Molecular Representations on Riemannian Manifold
- Title(参考訳): リーマン多様体上の調和分子表現の学習
- Authors: Yiqun Wang, Yuning Shen, Shi Chen, Lihao Wang, Fei Ye, Hao Zhou
- Abstract要約: 分子表現学習は、AIによる薬物発見研究において重要な役割を担っている。
本研究では,その分子表面のラプラス・ベルトラミ固有関数を用いた分子を表現する高調波分子表現学習フレームワークを提案する。
- 参考スコア(独自算出の注目度): 18.49126496517951
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Molecular representation learning plays a crucial role in AI-assisted drug
discovery research. Encoding 3D molecular structures through Euclidean neural
networks has become the prevailing method in the geometric deep learning
community. However, the equivariance constraints and message passing in
Euclidean space may limit the network expressive power. In this work, we
propose a Harmonic Molecular Representation learning (HMR) framework, which
represents a molecule using the Laplace-Beltrami eigenfunctions of its
molecular surface. HMR offers a multi-resolution representation of molecular
geometric and chemical features on 2D Riemannian manifold. We also introduce a
harmonic message passing method to realize efficient spectral message passing
over the surface manifold for better molecular encoding. Our proposed method
shows comparable predictive power to current models in small molecule property
prediction, and outperforms the state-of-the-art deep learning models for
ligand-binding protein pocket classification and the rigid protein docking
challenge, demonstrating its versatility in molecular representation learning.
- Abstract(参考訳): 分子表現学習は、AIによる薬物発見研究において重要な役割を果たす。
ユークリッド型ニューラルネットワークによる3次元分子構造のエンコーディングは,幾何学的深層学習コミュニティにおいて主流となっている。
しかし、ユークリッド空間における等分散制約とメッセージパッシングは、ネットワーク表現力を制限する可能性がある。
本研究では,その分子表面のラプラス・ベルトラミ固有関数を用いた分子を表現する高調波分子表現学習(HMR)フレームワークを提案する。
hmr は、2次元リーマン多様体上の分子幾何学的および化学的特徴のマルチレゾリューション表現を提供する。
また,より優れた分子符号化を実現するために,表面多様体上の効率的なスペクトルメッセージ転送を実現するための高調波メッセージパッシング法を提案する。
提案手法は, 分子特性予測における現行モデルに匹敵する予測力を示し, リガンド結合タンパク質ポケット分類における最先端の深層学習モデル, 硬質タンパク質ドッキング課題を上回り, その分子表現学習における汎用性を示す。
関連論文リスト
- FARM: Functional Group-Aware Representations for Small Molecules [55.281754551202326]
小型分子のための機能的グループ認識表現(FARM)について紹介する。
FARMはSMILES、自然言語、分子グラフのギャップを埋めるために設計された基礎モデルである。
MoleculeNetデータセット上でFARMを厳格に評価し、12タスク中10タスクで最先端のパフォーマンスを実現しています。
論文 参考訳(メタデータ) (2024-10-02T23:04:58Z) - Pre-training of Molecular GNNs via Conditional Boltzmann Generator [0.0]
分子配座のデータセットを用いた分子GNNの事前学習法を提案する。
本モデルは,既存の事前学習法よりも分子特性の予測性能がよいことを示す。
論文 参考訳(メタデータ) (2023-12-20T15:30:15Z) - Towards Predicting Equilibrium Distributions for Molecular Systems with
Deep Learning [60.02391969049972]
本稿では,分子系の平衡分布を予測するために,分散グラフマー(DiG)と呼ばれる新しいディープラーニングフレームワークを導入する。
DiGはディープニューラルネットワークを用いて分子系の記述子に条件付き平衡分布に単純な分布を変換する。
論文 参考訳(メタデータ) (2023-06-08T17:12:08Z) - MUDiff: Unified Diffusion for Complete Molecule Generation [104.7021929437504]
本稿では,原子の特徴,2次元離散分子構造,および3次元連続分子座標を含む分子の包括的表現を生成する新しいモデルを提案する。
拡散過程を認知するための新しいグラフトランスフォーマーアーキテクチャを提案する。
我々のモデルは、安定で多様な分子を設計するための有望なアプローチであり、分子モデリングの幅広いタスクに適用できる。
論文 参考訳(メタデータ) (2023-04-28T04:25:57Z) - Implicit Geometry and Interaction Embeddings Improve Few-Shot Molecular
Property Prediction [53.06671763877109]
我々は, 複雑な分子特性を符号化した分子埋め込みを開発し, 数発の分子特性予測の性能を向上させる。
我々の手法は大量の合成データ、すなわち分子ドッキング計算の結果を利用する。
複数の分子特性予測ベンチマークでは、埋め込み空間からのトレーニングにより、マルチタスク、MAML、プロトタイプラーニング性能が大幅に向上する。
論文 参考訳(メタデータ) (2023-02-04T01:32:40Z) - Improving Molecular Pretraining with Complementary Featurizations [20.86159731100242]
分子プレトレーニング(英: molecular pretraining)は、計算化学と薬物発見における様々な課題を解決するためのパラダイムである。
化学情報を異なる方法で伝達できることが示される。
我々は, 簡易で効果的な分子事前学習フレームワーク(MOCO)を提案する。
論文 参考訳(メタデータ) (2022-09-29T21:11:09Z) - A Molecular Multimodal Foundation Model Associating Molecule Graphs with
Natural Language [63.60376252491507]
本稿では,分子グラフとその意味的関連テキストデータから事前学習した分子マルチモーダル基礎モデルを提案する。
我々のモデルは、生物学、化学、材料、環境、医学などの分野において、AIを動力とする分野に幅広い影響を与えるだろうと考えています。
論文 参考訳(メタデータ) (2022-09-12T00:56:57Z) - Graph-based Molecular Representation Learning [59.06193431883431]
分子表現学習(MRL)は、機械学習と化学科学を結びつけるための重要なステップである。
近年、MRLは、特に深層分子グラフ学習に基づく手法において、かなりの進歩を遂げている。
論文 参考訳(メタデータ) (2022-07-08T17:43:20Z) - ChemRL-GEM: Geometry Enhanced Molecular Representation Learning for
Property Prediction [25.49976851499949]
化学表現学習のための新しい幾何強化分子表現学習法(GEM)を提案する。
まず、分子内の原子、結合、結合角を同時にモデル化する幾何学に基づくGNNアーキテクチャを設計する。
考案されたGNNアーキテクチャの上に,空間知識を学習するための幾何レベルの自己教師型学習戦略を提案する。
論文 参考訳(メタデータ) (2021-06-11T02:35:53Z) - Molecular CT: Unifying Geometry and Representation Learning for
Molecules at Different Scales [3.987395340580183]
この目的のために、新しいディープニューラルネットワークアーキテクチャである分子構成変換器(分子CT)が導入された。
計算効率と普遍性は、様々な分子学習シナリオに分子CTを多用する。
例として、分子CTは分子系の異なるスケールでの表現学習を可能にし、共通ベンチマークで同等または改善された結果が得られることを示す。
論文 参考訳(メタデータ) (2020-12-22T03:41:16Z) - Learning a Continuous Representation of 3D Molecular Structures with
Deep Generative Models [0.0]
生成モデルは、連続的な潜伏空間における分子の表現と最適化を学ぶ全く異なるアプローチである。
原子密度格子を用いた三次元分子構造の深部生成モデルについて述べる。
また、与えられた入力化合物に基づいて多様な分子の集合をサンプリングすることで、有効な薬物様分子の創出の可能性を高めることができる。
論文 参考訳(メタデータ) (2020-10-17T01:15:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。