Two Failures of Self-Consistency in the Multi-Step Reasoning of LLMs
- URL: http://arxiv.org/abs/2305.14279v4
- Date: Fri, 2 Feb 2024 18:37:07 GMT
- Title: Two Failures of Self-Consistency in the Multi-Step Reasoning of LLMs
- Authors: Angelica Chen, Jason Phang, Alicia Parrish, Vishakh Padmakumar, Chen
Zhao, Samuel R. Bowman, Kyunghyun Cho
- Abstract summary: We argue that self-consistency is an important criteria for valid multi-step reasoning in tasks where the solution is composed of the answers to multiple sub-steps.
We propose two types of self-consistency that are particularly important for multi-step reasoning -- hypothetical consistency and compositional consistency.
We demonstrate that multiple variants of the GPT-3/-4 models exhibit poor consistency rates across both types of consistency on a variety of tasks.
- Score: 78.31625291513589
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large language models (LLMs) have achieved widespread success on a variety of
in-context few-shot tasks, but this success is typically evaluated via
correctness rather than consistency. We argue that self-consistency is an
important criteria for valid multi-step reasoning in tasks where the solution
is composed of the answers to multiple sub-steps. We propose two types of
self-consistency that are particularly important for multi-step reasoning --
hypothetical consistency (a model's ability to predict what its output would be
in a hypothetical other context) and compositional consistency (consistency of
a model's final outputs when intermediate sub-steps are replaced with the
model's outputs for those steps). We demonstrate that multiple variants of the
GPT-3/-4 models exhibit poor consistency rates across both types of consistency
on a variety of tasks.
Related papers
- MM-R$^3$: On (In-)Consistency of Multi-modal Large Language Models (MLLMs) [26.475993408532304]
We study the ability of an MLLM model to produce semantically similar or identical responses to semantically similar queries.
We propose the MM-R$3$ benchmark, which analyses the performance in terms of consistency and accuracy in SoTA MLLMs.
Our analysis reveals that consistency does not always align with accuracy, indicating that models with higher accuracy are not necessarily more consistent, and vice versa.
arXiv Detail & Related papers (2024-10-07T06:36:55Z) - Can Large Language Models Always Solve Easy Problems if They Can Solve Harder Ones? [65.43882564649721]
Large language models (LLMs) have demonstrated impressive capabilities, but still suffer from inconsistency issues.
We develop the ConsisEval benchmark, where each entry comprises a pair of questions with a strict order of difficulty.
We analyze the potential for improvement in consistency by relative consistency score.
arXiv Detail & Related papers (2024-06-18T17:25:47Z) - An Empirical Investigation into Benchmarking Model Multiplicity for
Trustworthy Machine Learning: A Case Study on Image Classification [0.8702432681310401]
This paper offers a one-stop empirical benchmark of multiplicity across various dimensions of model design.
We also develop a framework, which we call multiplicity sheets, to benchmark multiplicity in various scenarios.
We show that multiplicity persists in deep learning models even after enforcing additional specifications during model selection.
arXiv Detail & Related papers (2023-11-24T22:30:38Z) - Self-Consistency of Large Language Models under Ambiguity [4.141513298907867]
This work presents an evaluation benchmark for self-consistency in cases of under-specification.
We conduct a series of behavioral experiments on the OpenAI model suite using an ambiguous integer sequence completion task.
We find that average consistency ranges from 67% to 82%, far higher than would be predicted if a model's consistency was random.
arXiv Detail & Related papers (2023-10-20T11:57:56Z) - AdaMerging: Adaptive Model Merging for Multi-Task Learning [68.75885518081357]
This paper introduces an innovative technique called Adaptive Model Merging (AdaMerging)
It aims to autonomously learn the coefficients for model merging, either in a task-wise or layer-wise manner, without relying on the original training data.
Compared to the current state-of-the-art task arithmetic merging scheme, AdaMerging showcases a remarkable 11% improvement in performance.
arXiv Detail & Related papers (2023-10-04T04:26:33Z) - Enhancing Large Language Models in Coding Through Multi-Perspective Self-Consistency [127.97467912117652]
Large language models (LLMs) have exhibited remarkable ability in code generation.
However, generating the correct solution in a single attempt still remains a challenge.
We propose the Multi-Perspective Self-Consistency (MPSC) framework incorporating both inter- and intra-consistency.
arXiv Detail & Related papers (2023-09-29T14:23:26Z) - Exposing and Addressing Cross-Task Inconsistency in Unified
Vision-Language Models [80.23791222509644]
Inconsistent AI models are considered brittle and untrustworthy by human users.
We find that state-of-the-art vision-language models suffer from a surprisingly high degree of inconsistent behavior across tasks.
We propose a rank correlation-based auxiliary training objective, computed over large automatically created cross-task contrast sets.
arXiv Detail & Related papers (2023-03-28T16:57:12Z) - AvgOut: A Simple Output-Probability Measure to Eliminate Dull Responses [97.50616524350123]
We build dialogue models that are dynamically aware of what utterances or tokens are dull without any feature-engineering.
The first model, MinAvgOut, directly maximizes the diversity score through the output distributions of each batch.
The second model, Label Fine-Tuning (LFT), prepends to the source sequence a label continuously scaled by the diversity score to control the diversity level.
The third model, RL, adopts Reinforcement Learning and treats the diversity score as a reward signal.
arXiv Detail & Related papers (2020-01-15T18:32:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.